6774
J. A. Jordan et al. / Tetrahedron Letters 52 (2011) 6772–6774
14. The most common strategy used to access cyclopenta[b]indol-1-ones involves
the selective oxidation of the cyclopenta[b]indoles using DDQ in aq THF as seen
in: Oikawa, Y.; Yonemitsu, O. J. Org. Chem. 1977, 42, 1213.
15. (a) Bergman, J.; Venemalm, L. Tetrahedron 1990, 46, 6061; (b) Bergman, J.;
Venemalm, L.; Gogoll, A. Tetrahedron 1990, 46, 6067.
28. Gregoire, B.; Carre, M. C.; Caubere, P. J. Org. Chem. 1986, 51, 1419.
29. (a) Nagao, Y.; Kaneko, K.; Kawabata, K.; Fujita, E. Tetrahedron Lett. 1978, 19,
5021; (b) Trost, B. M.; Massiot, G. S. J. Am. Chem. Soc. 1977, 99, 4405; (c) Tada,
N.; Shomura, M.; Nakayama, H.; Miura, T.; Itoh, A. Synlett 2010, 1979; (d)
Wendler, N. L.; Taub, D.; Graber, R. P. Tetrahedron 1959, 7, 173.
16. The cyclization of 5 in PPSE was only attempted once and indole 4 was the only
product isolated and characterized.
17. Song, C.; Knight, D. W.; Whatton, M. A. Org. Lett. 2006, 8, 163.
18. For recent reviews, see: (a) Frontier, A. J.; Collison, C. Tetrahedron 2005, 61,
7577; (b) Pellissier, H. Tetrahedron 2005, 61, 6479.
19. (a) Cheng, K.-F.; Chan, K.-P.; Lai, T.-F. J. Chem. Soc., Perkin Trans. 1 1991, 2461;
(b) Bergman, J.; Venemalm, L. Tetrahedron 1992, 48, 759; (c) Ishikura, M.
Heterocycles 1995, 41, 1385; (d) Ishikura, M.; Imaizumi, K.; Katagiri, N.
Heterocycles 2000, 53, 2201; (e) Miki, Y.; Hachiken, H.; Kawazoe, A.; Tsuzaki,
Y.; Yanase, N. Heterocycles 2001, 55, 1291; (f) Miki, Y.; Hachiken, H.; Sugimoto,
Y.; Yanase, N. Heterocycles 1997, 45, 1759.
20. (a) Churruca, F.; Fousteris, M.; Ishikawa, Y.; von Wantoch Rekowski, M.;
Hounsou, C.; Surrey, T.; Giannis, A. Org. Lett. 2010, 12, 2096; (b) Cheng, K.-F.;
Cheung, M.-K. J. Chem. Soc., Perkin Trans. 1 1996, 1213.
30. (a) Stallcup, W. D.; Hawkins, J. E. J. Am. Chem. Soc. 1942, 64, 1807; (b) Corey, E.
J.; Schaefer, J. P. J. Am. Chem. Soc. 1960, 82, 918; (c) Schaefer, J. P. J. Am. Chem.
Soc. 1962, 84, 717; (d) Schaefer, J. P. J. Am. Chem. Soc. 1962, 84, 713; (e) Belsey,
S.; Danks, T. N.; Wagner, G. Synth. Commun. 2006, 36, 1019; (f) Rabjohn, N.
Organic Reactions; John Wiley & Sons, Inc., 2004; (g) Xu, P.-F.; Chen, Y.-S.; Lin,
S.-I.; Lu, T.-J. J. Org. Chem. 2002, 67, 2309.
31. Compound 11b: yellow amorphous solid; 1H NMR (300 MHz, CDCl3) d 8.05–
7.92 (m, 4H), 7.70–7.65 (m, 1H), 7.58–7.39 (m, 4H), 1.76 (s, 6H); 13C NMR
(75 MHz, CDCl3) d 204.2, 177.8, 170.2, 138.7, 137.8, 135.3, 130.0, 129.4, 127.7,
127.2, 126.1, 122.3, 122.0, 114.8, 46.5, 23.5; IR
m (film) 1765, 1711, 1483, 1447,
1227, 1146, 1086, 1022 cmꢀ1; UV kmax (95% MeOH) 238, 255, 276, 335 nm.
HRMS (ESI): m/z calcd for C19H15NO4S: 354.0800 (M++H). Found: 354.0795.
32. Compound 11c: yellow solid; mp 159–160 °C; 1H NMR (300 MHz, CDCl3) d
7.98–7.93 (dd, J0 = 8.1 Hz, J00 = 20.7 Hz, 2H), 7.79–7.77 (d, J = 8.6 Hz, 2H), 7.43–
7.36 (dt, J0 = 8.1 Hz, J00 = 15.2 Hz, 2H), 7.30–7.28 (d, J = 8.1 Hz, 2H), 2.37 (s, 3H),
1.74 (s, 6H); 13C NMR (75 MHz, CDCl3) d 204.3, 177.8, 170.3, 146.9, 138.7,
134.7, 130.6, 127.6, 127.4, 127.3, 126.0, 122.4, 122.1, 114.9, 46.6, 23.5, 21.9; IR
21. Illi, V. O. Synthesis 1979, 136.
22. Compound 10b: yellow oil; 1H NMR (300 MHz, CDCl3) d 7.97–7.94 (m, 1H),
7.91–7.84 (m, 3H), 7.64–7.58 (m, 1H), 7.52–7.46 (m, 2H), 7.34–7.31 (m, 2H),
2.96 (s, 2H), 1.74 (s, 6H); 13C NMR (75 MHz, CDCl3) d 196.5, 173.0, 141.6, 138.9,
134.8, 130.0, 127.4, 127.1, 126.2, 125.4, 122.0, 121.4, 115.1, 60.2, 40.8, 28.3; IR
m
(KBr) 1762, 1708, 1484, 1445, 1229, 1160, 1113, 1036 cmꢀ1; UV kmax (95%
MeOH) 246, 256, 274, 332 nm. Anal. calcd for C20H17NO4S: C, 65.38; H, 4.66; N,
3.81; S, 8.73. Found: C, 65.41; H, 4.69; N, 3.84; S, 8.57.
m
(film) 1628, 1458, 1188, 1140, 1090, 1022 cmꢀ1; UV kmax (95% MeOH) 211,
232, 270 nm. HRMS (ESI): m/z calcd for C19H17NO3S (M++Na): 362.0827. Found:
362.0821.
33. Compound 11d: yellow feathery solid; mp 162–163 °C; 1H NMR (300 MHz,
CDCl3) d 8.18–8.17 (d, J = 8.6 Hz, 1H), 8.05–8.04 (d, J = 7.8 Hz, 1H), 7.50–7.47 (t,
J = 7.9 Hz, 1H), 7.44–7.41 (t, J = 7.3 Hz, 1H), 4.68–4.65 (q, J = 7.2 Hz, 2H), 1.61 (s,
6H), 1.60–1.58 (t, J = 7.2 Hz, 3H); 13C NMR (75 MHz, CDCl3) d 204.9, 178.1,
170.3, 149.8, 138.4, 127.6, 127.3, 125.8, 122.1, 122.0, 116.6, 65.5, 46.0, 22.5,
23. Jacquemard, U.; Bénéteau, V.; Lefoix, M.; Routier, S.; Mérour, J.-Y.; Coudert, G.
Tetrahedron 2004, 60, 10039.
24. Compound 10c: yellow oil; 1H NMR (300 MHz, CDCl3) d 7.97–7.93 (m, 1H),
7.90–7.87 (m, 1H), 7.76–7.73 (d, J = 9.0 Hz, 2H), 7.34–7.26 (m, 4H), 2.94 (s, 2H),
2.37 (s, 3H), 1.74 (s, 6H); 13C NMR (75 MHz, CDCl3) d 196.5, 172.7, 146.0, 141.6,
136.3, 130.5, 127.2, 126.1, 125.7, 125.2, 122.6, 121.5, 115.1, 60.2, 40.8, 28.3,
14.4; IR
m
(KBr) 1752, 1713, 1474, 1424, 1227, 1150, 1111, 1007 cmꢀ1; UV kmax
(95% MeOH) 252, 260, 272, 342 nm. Anal. calcd for C16H15NO4: C, 67.36; H,
5.30; N, 4.91. Found: C, 67.36; H, 5.37; N, 4.83.
22.2; IR
m
(film) 1636, 1458, 1254, 1152, 1089, 1022 cmꢀ1; UV kmax (95%
34. Gribble, G. W.; Barden, T. C.; Johnson, D. A. Tetrahedron 1988, 44, 3195.
35. In all cases, the products were signaled in part to the disappearance of 2H
MeOH) 211, 231, 275 nm. HRMS (ESI): m/z calcd for C20H19NO3S (M++H):
354.1164. Found: 354.1158.
singlet at approximately 2.95 ppm in the 1H NMR while the structures of
a-
25. Compound 10d: yellow oil; 1H NMR (300 MHz, CDCl3)
d
8.13–8.10 (d,
diketones 11c and 11d were also confirmed by X-ray crystallography.
J = 8.2 Hz, 1H), 7.92–7.90 (d, J = 7.6 Hz, 1H), 7.39–7.30 (m, 2H), 4.63–4.56 (q,
J = 7.2 Hz, 2H), 2.92 (s, 2H), 1.63 (s, 6H), 1.58–1.53 (t, J = 7.2 Hz, 3H); 13C NMR
(75 MHz, CDCl3) d 196.8, 173.0, 151.1, 141.6, 126.1, 125.1, 124.9, 122.5, 121.1,
36. Bruceolline E (3) was obtained as a yellow solid (0.42 g, 97%): mp 289–290
(dec) °C. Lit. mp5 289–291 (dec) °C. 1H NMR (600 MHz, DMSO-d6) d 12.9
(bs,1H), 7.85–7.84 (d, J = 8.0 Hz, 1H), 7.62–7.61 (d, J = 8.1 Hz, 1H), 7.42–7.39 (t,
J = 7.4 Hz, 1H), 7.34–7.31 (t, J = 7.7 Hz, 1H), 1.44 (s, 6H). 13C NMR (150 MHz,
DMSO-d6) d 206.6, 175.2, 171.0, 140.0, 125.4, 123.4, 121.5, 121.1, 121.0, 113.6,
117.0, 64.9, 59.9, 40.3, 27.5, 14.9; IR
1016 cmꢀ1; UV kmax (95% MeOH) 210, 232, 270 nm. HRMS (ESI): m/z calcd for
16H17NO3 (M++H): 272.1287. Found: 272.1281.
m (film) 1734, 1453, 1211, 1152, 1082,
C
41.6, 22.9; IR
1013 cmꢀ1
UV kmax (95% MeOH) 256, 264, 272, 342 nm. Anal. calcd for
13H11NO2: C, 73.22; H, 5.20; N 6.57. Found: C, 72.48; H, 5.30; N 6.40.
m (KBr) 3418, 1750, 1665, 1469, 1453, 1210, 1152, 1094,
26. Deprotection—KOH, aq THF,
respectively.
D
—of 10b and 10c generated 6 in 41% and 71%,
;
C
27. Bauer, D. P.; Macomber, R. S. J. Org. Chem. 1975, 40, 1990.