Table 3 Reaction scope of aromatic ketones 1 and DMAa
ketones and unsaturated methyl ketones. This transformation
contains three noteworthy characteristics: (1) both I2 and
DMF play dual roles in the whole transformation, (2) byproduct
CuI generated in the upstream reaction was utilized as the
secondary catalyst, (3) a broad scope of substrates were tolerated.
We thank the National Natural Science Foundation of China
(Grant 20872042, and 201032001) and PCSIRT (No. IRT0953).
Entry
R
3
Yieldb (%)
Notes and references
1
2
3
4
5
6
7
8
Ph (1a)
4-MeC6H4 (1b)
4-MeOC6H4 (1c)
4-NO2C6H4 (1d)
4-BrC6H4 (1e)
2-Furyl (1f)
2-Thienyl (1g)
2-Naphthyl (1h)
(E)-C6H5–CHQCH– (1o)
(E)-3,4-OMe2C6H4–CHQCH– (1r)
(E)-3-OMe-4-
C6H5OCH2–C6H4–CHQCH– (1s)
(E)-4-NO2C6H4–CHQCH– (1v)
(E)-3-NO2C6H4–CHQCH– (1w)
3a
3b
3c
3d
3e
3f
3g
3h
3o
3r
3s
80
74
78
52
68
80
75
58
70
62
65
1 For some reviews of domino reactions, see: (a) L. F. Tietze,
G. Brasche and K. Gericke, Domino Reactions in
Organic Synthesis, Wiley-VCH, Weinheim, Germany, 2006;
(b) L. F. Tietze, Chem. Rev., 1996, 96, 115; (c) K. C. Nicolaou,
T. Montagnon and S. A. Snyder, Chem. Commun., 2003, 551;
(d) R. J. K. Talor, M. Reid, J. Foot and S. A. Raw, Acc. Chem.
Res., 2005, 38, 851; (e) J. C. Wasilke, S. J. Obrey, R. T. Brker and
G. C. Bazan, Chem. Rev., 2005, 105, 1001.
2 (a) B. M. Trost, Science, 1991, 254, 1471; (b) R. A. Sheldon, Pure
Appl. Chem., 2000, 72, 1233; (c) P. Anastas and N. Eghbali, Chem.
Soc. Rev., 2010, 39, 301; (d) J.-J. Cao, F. Zhou and J. Zhou,
Angew. Chem., Int. Ed., 2010, 49, 4976.
9
10
11
12
13
3v
3w
65
57
3 For reviews, see: (a) X. Lu, C. Zhang and Z. Xu, Acc. Chem. Res.,
2001, 34, 535; (b) L.-W. Ye, J. Zhou and Y. Tang, Chem. Soc. Rev.,
2008, 37, 1140; (c) V. Nair, A. T. Biju, S. C. Mathew and
B. P. Babu, Chem.–Asian J., 2008, 3, 810.
a
Reaction conditions: 1 (1.0 mmol), I2 (1.0 mmol), CuO (1.0 mmol) in
b
DMA (3 mL) at 110 1C for 1–6 h. Isolated yields.
4 (a) M. B. Smith and J. March, March’s Advanced Organic Chem-
istry Reactions: Mechanisms and Structure, John Wiley & Sons
Inc., New York, 5th edn, 2001, pp. 1205–1209; (b) P. Anastas and
E. Nicolas, Chem. Soc. Rev., 2010, 39, 301.
5 (a) P. J. Alaimo, R. O’Brien, A. W. Johnson, S. R. Slauson,
J. M. O’Brien, E. L. Tyson, A.-L. Marshall, C. E. Ottinger,
J. G. Chacon, L. Wallace, C. Y. Paulino and S. Connell, Org.
Lett., 2008, 10, 5111; (b) B.-L. Yang, Z.-T. Weng, S.-J. Yang and
S.-K. Tian, Chem.–Eur. J., 2010, 16, 718; (c) M. Gao, Y. Yang,
Y.-D. Wu, C. Deng, W.-M. Shu, D.-X. Zhag, L.-P. Cao, N.-F. She
and A.-X. Wu, Org. Lett., 2010, 12, 4026.
6 For selected examples, see: (a) M. S. Chen and M. C. White, J. Am.
Chem. Soc., 2004, 126, 1346; (b) X. Chen, X.-S. Hao,
C. E. Goodhue and J.-Q. Yu, J. Am. Chem. Soc., 2006,
128, 6790; (c) H.-F. Jiang, H.-J. Chen, A.-Z. Wang and
X.-H. Liu, Chem. Commun., 2010, 46, 7259; (d) Y.-T. Leng,
F. Yang, W.-G. Zhu, Y.-J. Wu and X. Li, Org. Biomol. Chem.,
2011, 9, 5288.
7 (a) T. W. Green and P. G. M. Wuts, Protective Groups in Organic
Synthesis, Wiley, New York, 1991, pp. 87–104; (b) Z.-Q. Liu,
Z.-P. Cao and H.-F. Du, Org. Biomol. Chem., 2011, 9, 5369;
(c) S. R. Neufeldt and M. S. Sanford, Org. Lett., 2010, 12, 532;
(d) D.-W. Wang, X.-H. Ye and X.-D. Shi, Org. Lett., 2010, 12, 2088.
8 (a) F. Wang, H. Liu, L.-F. Cun, J. Zhu, J.-G. Deng and
Y.-Z. Jiang, J. Org. Chem., 2005, 70, 9424.
9 (a) J. C. Lee, Y. S. Jinn and J.-H. Choi, Chem. Commun., 2001,
957; (b) H. Urata, Y. Nishioka, T. Tobashi, Y. Matsumura,
N. Tomimori, Y. Ono, Y. Kiso and S. I. Wada, Chem. Pharm.
Bull., 2008, 56, 1611.
10 M. Ochiai, Y. Takeuchi, T. Katayama, T. Sueda and
K. Miyamoto, J. Am. Chem. Soc., 2005, 127, 12244.
Scheme 1 The isotope labeling experiment and control experiment.
Unless otherwise noted, reactions conditions were I2 (1.0 mmol), CuO
(1.0 mmol), DMF (3 mL), 110 1C for 2 h.
On the basis of the above results, a plausible mechanism of
the present reaction could be described as follows using
acetophenone (1b) as an example (Scheme 2). Initially, the
acetophenone 1b is converted to B in the media of I2 and CuO.
Subsequently, DMF as a nucleophilic agent reacts with inter-
mediate B in the presence of CuI, which forms as a byproduct
from the upstream iodination process, to afford intermediate
C. Finally, intermediate C undergoes hydrolyzation/oxidation
reaction to furnish the desired product in the presence of a
catalytic amount of water.9a,14 More importantly, both I2 and
DMF play dual roles in this process. Molecule I2 could not
only react with acetophenone (1a) to afford intermediate B,
but also promotes the transformation of CuO into the secondary
catalyst CuI. DMF acts as both the solvent and nucleophilic
reagent.
11 (a) Y. Sun and R.-H. Fan, Org. Lett., 2009, 11, 5174; (b) Y. Sun
and R.-H. Fan, Chem. Commun., 2010, 46, 6834.
12 (a) G.-D. Yin, B.-H. Zhou, X.-G. Meng, A.-X. Wu and Y.-J. Pan,
Org. Lett., 2006, 8, 2245; (b) M. Gao, Y. Yang, Y.-D. Wu,
C. Deng, L.-P. Cao, X.-G. Meng and A.-X. Wu, Org. Lett.,
2010, 12, 1856; (c) M. Gao, G.-D. Yin, Z.-H. Wang, Y.-D. Wu,
C. Guo, Y.-J. Pan and A.-X. Wu, Tetrahedron, 2009, 65, 6047.
13 Compounds 1o–1x were synthesized via condensation of aromatic
aldehyde and acetone in the presence of NaOH. See: N. L. Drake
and P. Allen, Jr., Org. Synth. Coll. Vol. 1, John Wiley & Sons,
London, 1941, pp. 77–78.
In summary, we have developed a sustainable byproduct
catalyzed domino method for the facile synthesis of a-formyloxy
and acetoxy ketones from simple and readily available aromatic
14 For water catalyzed hydrolyzation/oxidation reactions, see:
(a) A. Takemiya and J. F. Hartwig, J. Am. Chem. Soc., 2006,
128, 14800; (b) G. D. Vo and J. F. Hartwig, Angew. Chem., Int.
Ed., 2008, 47, 2127; (c) Y. Liu, C.-L. Deng, R.-Y. Tang,
X.-G. Zhang and J.-H. Li, Org. Lett., 2011, 13, 2184.
Scheme 2 The plausible mechanism of the present reaction.
12702 Chem. Commun., 2011, 47, 12700–12702
c
This journal is The Royal Society of Chemistry 2011