2.5–3 ppm before reaching a plateau. In contrast, the amide
proton of both receptors experienced, however, a significantly
smaller shift to that seen for 1 and 2 above. The formation
of only the 1 : 1 species for receptor 4 with AcOÀ was also
evident in the MALDI-TOF mass spectrum (ESIw). Similar
shifts were seen for H2PO4À. The smallest spectral changes
were observed upon titration with ClÀ. The results from these
NMR titrations were fitted to 1 : 1 binding, from which log
K1 : 1 was determined, Table 1. Here, receptor 4 showed a
slightly higher affinity for these anions than 3; albeit the
difference in log K1 : 1 was to a lesser extent than seen for 1
and 2. Interestingly, the binding of AcOÀ was significantly
Rev., 2008, 37, 151; (c) P. A. Gale and R. Quesada, Coord. Chem.
Rev., 2006, 250, 3219; (d) J. W. Steed, Chem. Commun., 2006, 2637.
3 T. Gunnlaugsson, M. Glynn, G. M. Tocci (nee Hussey), P. E. Kruger
´
and F. M. Pfeffer, Coord. Chem. Rev., 2006, 250, 3094.
4 J. L. Sessler, P. A. Gale and W. S. Cho, Anion Receptor Chemistry,
Royal Society of Chemistry, Cambridge, UK, 2006.
5 (a) E. B. Veale, G. M. Tocci, F. M. Pfeffer, P. E. Kruger and
T. Gunnlaugsson, Org. Biomol. Chem., 2009, 7, 3447; (b) C. M.
G. dos Santos and T. Gunnlaugsson, Dalton Trans., 2009, 4712;
(c) E. B. Veale and T. Gunnlaugsson, J. Org. Chem., 2008,
73, 8073; (d) R. M. Duke and T. Gunnlaugsson, Tetrahedron Lett.,
2007, 48, 8043; (e) C. M. G. dos Santos, T. McCabe and
T. Gunnlaugsson, Tetrahedron Lett., 2007, 48, 3135; (f) H. D.
P. Ali, P. E. Kruger and T. Gunnlaugsson, New J. Chem., 2008,
32, 1153; (g) A. J. Lowe, F. A. Dyson and F. M. Pfeffer, Org.
Biomol. Chem., 2007, 5, 1343; (h) F. M. Pfeffer, K. F. Lim and
K. J. Sedgwick, Org. Biomol. Chem., 2007, 5, 1795.
6 (a) P. A. Gale, J. R. Hiscock, S. J. Moore, C. Caltagirone,
M. B. Hursthouse and M. E. Leight, Chem.–Asian J., 2010,
5, 555; (b) R. M. Duke, J. E. O’Brien, T. McCabe and
T. Gunnlaugsson, Org. Biomol. Chem., 2008, 6, 4089;
(c) A. J. Lowe, G. A. Dyson and F. M. Pfeffer, Eur. J. Org. Chem.,
2008, 1559; (d) L.-H. Wei, Y.-B. He, J.-L. Wu, L.-Z. Meng and
X. Yang, Supramol. Chem., 2004, 16, 561.
7 (a) C. Jia, B. Wu, S. Li, X. Huang and X.-J. Yang, Org. Lett., 2010,
12, 5612; (b) R. Yang, W.-X. Liu, H. Shen, H.-H. Huang and
Y.-B. Jiang, J. Phys. Chem. B, 2008, 112, 5105; (c) F. M. Pfeffer,
P. E. Kruger and T. Gunnlaugsson, Org. Biomol. Chem., 2007,
5, 1894; (d) E. Quinlan, S. E. Matthews and T. Gunnlaugsson,
J. Org. Chem., 2007, 72, 7497.
8 (a) C. Jia, B. Wu, S. Li, X. Huang, Q. Zhao, Q.-S. Li and
X.-J. Yang, Angew. Chem., Int. Ed., 2011, 50, 486; (b) M. Li,
B. Wu, C. Jia, X. Huang, Q. Zhao, S. Shao and X.-J. Yang,
higher for both compared to 1 and 2. For both, the smallest
2À
log K1 : 1 was observed for SO4
.
With the view of further investigating the effect that the
various substituents had on the anion affinity of these tripodal
systems, the m-urea-phenyl-alkyl chain and the p-urea-alkyl
chain based receptors 5 and 6 were also analysed in an
analogous manner. Here, 5, a slightly modified version of 3,
was determined to have higher affinity for the anions than 6,
which is to be expected, as 6 lacks the second aryl group, which
through inductive effects makes the protons in 5 more acidic
and hence, better hydrogen bonding donors, Table 1. In fact,
comparison of 3 and 5 showed that both display similar
affinity for these anions. Analysis of the binding of AcOÀ
2À
and SO4 to 6 did not result in a full plateau being reached
Chem.–Eur. J., 2011, 17, 2272; (c) M. Alajarın, R. A. Orenes,
´
after the addition of excess anions, making accurate determi-
nation of log K1 : 1 difficult. From the analysis of 5, slightly
higher affinity was seen for AcOÀ, over H2PO4À; the latter
being of similar magnitude, to that seen for 1 and 3 above. In
J. W. Steed and A. Pastor, Chem. Commun., 2010, 46, 1394;
(d) D. R. Turner, M. J. Paterson and J. W. Steed, J. Org. Chem.,
2006, 71, 1598; (e) F. M. Pfeffer, T. Gunnlaugsson, P. Jensen and
P. E. Kruger, Org. Lett., 2005, 7, 5357.
9 (a) D. R. Turner, M. J. Paterson and J. W. Steed, Chem. Commun.,
2008, 1395; (b) N. Singh and D. O. Jang, Org. Lett., 2007, 9, 1991;
(c) C. R. Bondy, P. A. Gale and S. J. Loeb, J. Am. Chem. Soc.,
2004, 126, 5030; (d) S. J. Brooks, P. A. Gale and M. E. Light,
Chem. Commun., 2006, 4344; (e) J. Nelson, M. Nieuwenhuyzen,
2À
contrast the binding of SO4 was significantly weaker for 5
than seen for 1; but of similar to that seen forÀ3. Receptor 6 also
showed a significant interaction with H2PO4 and ClÀ, but in
contrast to that seen for 1–5 it was the lowest in the series.
In summary, we have developed six novel tripodal receptors,
1–6, possessing highly organised urea binding sites, and deter-
mined their binding properties with various anions using
1H NMR titrations. These showed high binding affinities
for H2PO4À and AcOÀ. Moreover, 2 also showed high affinity
for SO42À. The results clearly show that our simple design
principle facilitates the development of novel anion receptors
possessing tuneable cooperative binding. We are currently
developing this anion binding motives in greater details.
We thank the Science Foundation Ireland for SFI RFP 2008
and 2009 grants, HEA-PRTLI Cycle 4 (CSCB), TCD and
Ministero per l’ Universitae la Ricerca Scientifica e Tecnologica
(Rome, Italy) for financial support.
I. Pal and E. M. Town, Dalton Trans., 2004, 2303; (f) S. Yun,
´
H. Ihm, H. G. Kim, C.-W. Lee, B. Indrajit, K. S Oh, Y. J. Gong,
J. W. Lee, J. Yoon, H. C. Lee and K. S. Kim, J. Org. Chem., 2003,
68, 2467; (g) H. Ihm, S. Yun, H. G. Kim, J. K. Kim and K. S. Kim,
J. Org. Chem., 2002, 4, 2897.
10 (a) S. Hussain, P. R. Brotherhood, L. W. Judd and A. P. Davis,
J. Am. Chem. Soc., 2011, 133, 1614; (b) J. T. Davis, O. Okunola
and R. Quesada, Chem. Soc. Rev., 2010, 39, 3583.
11 (a) N. J. Andrews, C. J. E. Haynes, M. E. Light, S. J. Moore,
C. C. Tong, J. T. Davis, W. A. Harrell and P. A. Gale, Chem. Sci.,
2011, 2, 256; (b) J. T. Davis, P. A. Gale, O. A. Okunola, P. Prados,
J. C; Iglesias-Saanchez, T. Torroba and R. Quesada, Nat. Chem.,
´
2009, 1, 138; (c) N. Busschaert, P. A. Gale, C. J. E. Haynes,
M. E. Light, S. J. Moore, C. C. Tong, J. T. Davis and
W. A. Harrell, Chem. Commun., 2010, 46, 6252.
12 P. A. Gale, J. R. Hiscock, C. Jie Zhu, M. B. Hursthouse and
M. E. Light, Chem. Sci., 2010, 1, 215.
13 H. R. Seong, D.-S. Kim, S.-G. Kim, H.-J. Choib and K. H. Ahn,
Tetrahedron Lett., 2004, 45, 723.
14 C. M. G. dos Santos, T. McCabe, G. W. Watson, P. E. Kruger and
T. Gunnlaugsson, J. Org. Chem., 2008, 73, 9235.
15 E. M. Boyle, T. McCabe and T. Gunnlaugsson, Supramol. Chem.,
2010, 22, 586.
16 F. D. Lewis, T. M. Long, C. L. Stern and W. Liu, J. Phys. Chem.
A, 2003, 107, 3254.
Notes and references
1 (a) P. A. Gale, Chem. Soc. Rev., 2010, 39, 3746; (b) J. W. Steed,
Chem. Soc. Rev., 2010, 39, 3686; (c) B. P. Hjay, Chem. Soc. Rev.,
2010, 39, 3700; (d) A.-F. Li, J.-H. Wang, F. Wang and Y.-B. Jiang,
Chem. Soc. Rev., 2010, 39, 3729; (e) V. Amendola, L. Fabbrizzi and
L. Mosca, Chem. Soc. Rev., 2010, 39, 3889; (f) R. M. Duke,
E. B. Veale, F. M. Pfeffer, P. E. Kruger and T. Gunnlaugsson,
Chem. Soc. Rev., 2010, 39, 3936.
17 P. Ballester, Chem. Soc. Rev., 2010, 39, 3810.
18 Examples of such large changes in the 1H NMR: T. Gunnlaugsson,
A. P. Davis, J. E. O’Brien and M. Glynn, Org. Lett., 2002, 4, 2449.
19 M. J. Hynes, J. Chem. Soc., Dalton Trans., 1993, 311.
2 (a) P. Padros and R. Quesada, Supramol. Chem., 2008, 20, 201;
(b) P. A. Gale, S. E. Garcia-Garrido and J. Garric, Chem. Soc.
c
12178 Chem. Commun., 2011, 47, 12176–12178
This journal is The Royal Society of Chemistry 2011