substitution can dramatically alter the intermolecular in-
teractions and the optical electronic properties.6,7 Further-
more, the core-extended of PDIs attract huge interest and
offer access to various biological8 as well as organic elec-
tronic applications.9,10 Core bay-extended PDIs include
annulated hydrocarbon aromatic rings11 and diverse hete-
rocycles such as sulfur-,12 pyridyl-, and N-heterocyclic13
substituted PDIs.
The higher PDI homologues, terrylene diimides (TDIs),
exhibit the same attractive properties, such as brilliant
color; high extinction coefficients, a high fluorescence
quantum yield of 90%, and high thermal, chemical, and
photochemical stabilities, which are generally required for
practical use.7a,14,15 However, core-extended terrylene dii-
mides on the bay region remain unexploited. Our current
interests are development of the core-enlarged terrylene
diimide on the bay region for use as stable fluorophores.16
The synthetic approach for CETDIs is outlined in
Scheme 1. Tetrabromoterrylenedicarboximide 4 was
prepared according to literature procedures.18 Under
Sonogashira conditions, the reaction of compound 4 with
1-dodecyne yielded the intermediate compound 5, which
was not isolated but was converted to the CETDI 2
through the addition of DBU to the reaction mixture.
Some cyclization of intermediate compound 5 to the final
product was observed prior to the addition of DBU.6c
Suzuki coupling of compound 4 with 3-isopropyl-
phenylboronic acid produced the terrylene diimides 6 with
a 63% yield. Intramolecular oxidative cyclodehydrogena-
tion reactions were then performed on compound 6 using
FeCl3 as an oxidant. With 40 equiv of FeCl3 (3.3 equiv per
hydrogen to be removed), the completely closed CETDI 3
was obtained within 30 min with a 70% yield.19,20 These
CETDI compounds show good solubility in common
organic solvents such as cyclohexane, dichloromethane,
chloroform, tetrahydrofuran, and toluene. The CETDIs
have been fully characterized by H NMR spectroscopy, C
NMR spectroscopy, and matrix-assisted laser desorption/
ionization mass spectrometry (MALDI- TOF-MS).
€
While this work was in progress, Klaus Mullen and co-
workers reported the synthesis and chiroptical properties
of a partially core-extended terrylene diimide.17 In this
paper, the synthesis of the fully core-extended terrylene
diimides on the bay region (CETDIs) was present, and
their optical and electrochemical properties were further
investigated.
The 1H NMR spectrum of CETDI 2 in CDCl3 (Figure
S1A in Supporting Information) shows the resolved reso-
nances of the fourteen aromatic protons with four signals.
However, eight protons H1 (ArÀCH2) of CETDI 2 show
two distinct signals at 4.37À4.32 and 4.19À4.14 ppm,
Scheme 1. Synthesis of Core-Extended Terrylene Diimidesa
13
which were assigned by the aid of 1HÀ C COSY NMR
data. It suggests that protons ArÀCH2 are not equivalent
€
€
(10) (a) Nolde, F.; Pisula, W.; Muller, S.; Kohl, C.; Mullen, K. Chem.
Mater. 2006, 18, 3715. (b) An, Z.; Yu, J.; Domercq, B.; Jones, S. C.;
Barlow, S.; Kippelen, B.; Marder, S. R. J. Mater. Chem. 2009, 19, 6688.
€
(11) (a) Eversloh, C. L.; Li, C.; Mullen, K. Org. Lett. 2011, 13, 4148.
(b) Li, Y.; Xu, L.; Liu, T.; Yu, Y.; Liu, H.; Li, Y.; Zhu, D. Org. Lett.
2011, 13, 5692.
(12) (a) Qian, H.; Liu, C.; Wang, Z.; Zhu, D. Chem. Commun. 2006,
44, 4587. (b) Choi, H.; Paek, S.; Song, J.; Kim, C.; Cho, N.; Ko, J. Chem.
Commun. 2011, 47, 5509.
(13) (a) Jiang, W.; Li, Y.; Yue, W.; Zhen, Y.; Qu, J.; Wang, Z. Org.
Lett. 2010, 12, 228. (b) Li, Y.; Li, Y.; Li, J.; Li, C.; Liu, X.; Yuan, M.; Liu,
H.; Wang, S. Chem.;Eur. J. 2006, 12, 8378.
€
(14) (a) Holtrup, F. O.; Muller, G. R. J.; Quante, H.; De Feyter, S.;
€
De Schryver, F. C.; Mullen, K. Chem.;Eur. J. 1997, 2, 219. (b) Weil, T.;
€
Reuther, E.; Beer, C.; Mullen, K. Chem.;Eur. J. 2004, 10, 1398. (c)
€
Fron, E.; Puhl, L.; Oesterling, I.; Li, C.; Mullen, K.; De Schryver, F. C.;
Hofkens, J.; Vosch, T. ChemPhysChem 2011, 12, 595.
€
€
(15) (a) Jung, C.; Muller, B. K.; Lamb, D. C.; Nolde, F.; Mullen, K.;
€
Brauchle, C. J. Am. Chem. Soc. 2006, 128, 5283. (b) Jung, C.; Ruthardt,
€
N.; Lewis, R.; Michaelis, J.; Sodeik, B.; Nolde, F.; Peneva, K.; Mullen,
€
K.; Brauchle, C. ChemPhysChem 2009, 10, 180. (c) Davies, M.; Jung, C.;
€
€
Wallis, P.; Schnitzler, T.; Li, C.; Mullen, K.; Brauchle, C. Chem-
PhysChem 2011, 12, 1588.
(16) (a) Gao, B. X.; Li, H. X.; Liu, H. M.; Zhang, L. C.; Bai, Q. Q.;
Ba, X. W. Chem. Commun. 2011, 47, 3894. (b) Gao, B. X.; Xia, D. F.;
Zhang, L. C.; Bai, Q. Q.; Bai, L. B.; Yang, T.; Ba, X. W. J. Mater. Chem.
2011, 21, 15975.
a (a) CuI, Pd(PPh3)4, TEA, toluene, 80 °C, 24 h; (b) DBU, toluene,
80 °C, 24h;(c) Pd2(dba)3, DPEPhos, K2CO3, H2O, toluene, ethanol, 95 °C,
36 h; (d) FeCl3, nitromethane/CH2Cl2, 25 °C for 0.5 h.
€
(17) Eversloh, C. L.; Liu, Z.; Muller, B.; Stangl, M.; Li, C.; Mullen,
€
K. Org. Lett. 2011, 13, 5528.
(18) Nolde, F.; Qu, J.; Kohl, C.; Pschirer, N. G.; Reuther, E.; Mullen,
€
(7) (a) Wegner, H. A.; Scott, L. T.; de Meijere, A. J. Org. Chem. 2003,
K. Chem.;Eur. J. 2005, 11, 3959.
€
€
68, 883. (b) Muller, S.; Mullen, K. Chem. Commun. 2005, 4045.
(19) At room temperature, the color of the reaction solution changed
three times, suggesting that the cyclodehydrogenation reaction is a
stepwise mechanism. However, this cyclodehydrogenation condition
using 20 equiv of FeCl3 (1.7 equiv per hydrogen to be removed) did
not produce the completely closed CETDI 3, even after the reaction time
was extended to 48 h. The formation of partially closed compound 6 is
due to the hindrance induced by the twisting of the terrylene diimides 6.
€
(c) Avlasevich, Y.; Li, C.; Mullen, K. J. Mater. Chem. 2010, 20, 3814.
(8) (a) Franceschin, M.; Alvino, A.; Casagrande, V.; Mauriello, C.;
Pascucci, E.; Savino, M.; Ortaggi, G.; Bianco, A. Bioorg. Med. Chem.
2007, 15, 1848. (b) Franceschin, M.; Alvino, A.; Ortaggi, G.; Bianco, A.
Tetrahedron Lett. 2004, 45, 9015.
€
(9) (a) Herrmann, A.; Mullen, K. Chem. Lett. 2006, 35, 978.
ꢀ
(b) Samori, P.; Severin, N.; Simpson, C. D.; Mullen, K.; Rabe, J. P.
€
€
(20) Feng, X.; Wu, J.; Enkelmann, V.; Mullen, K. Org. Lett. 2006, 8,
1145.
J. Am. Chem. Soc. 2002, 124, 9454.
Org. Lett., Vol. 13, No. 24, 2011
6485