temperature improved the enantioselectivity and diaster-
eoselectivity significantly, while still preserving high yields
and short reaction times (entries 17ꢀ19).
Scheme 1. Organocatalytic Enantioselective Michael Addition
of Nitroalkanes to R,β-Unsaturated Cyanoacetate Oxindoles
Having established an optimal reaction protocol, we
next probed a variety of indolylidenecyanoacetates
(1) with nitroalkanes (2) to determine the scope of the
IV-catalyzed enantioselective Michael addition transforma-
tion (Table 2). We found that the process served as a
general approach to enantioenriched 3,30-disubstituted
oxindoles 3 with a significant structural variation. Nota-
bly, in all cases, the processes proceeded efficiently (1.5ꢀ
8 h) in high yield (93ꢀ99%) and with good to high
enantioselectivity (85ꢀ98% ee) and diastereoselectiv-
ity (4:1 to >20:1 dr). It appeared that the electronic effect
was limited. The benzene ring of 1 bearing electron-neutral
(entry 1), electron-withdrawing (entries 2ꢀ6), electron-
donating groups (entry 7) gave 85ꢀ98% ee and diastereo-
selectivity (9:1 to >20:1). Nevertheless, it was found that
derivatization of the nitrogen moiety in 1 (entries 8ꢀ15)
had an influence on the diastereoselectivity of products; in
general, the dr was decreased while the reaction yields and
enantioselectivities were affected marginally. Finally, we
also probed the structural features of nitroalkanes that
included nitroethane and -propane (entries 16 and 17) as
Michael donors for the conjugate addition reaction. They
smoothly underwent the reaction with high efficiency, and
three stereogentic centers were generated.
indolylidenecyanoacetates to generate 3,30-disubstituted
chiral oxindoles in high yield and with good to high
enantioselectivity (85ꢀ98% ee) and good to high dr (1:4 to
>20:1 dr ratio) under neat conditions. Furthermore, as
demonstrated, the adducts can be readily transformed to
chiral spiro-oxindoles as potential CRTH2 (DP2) receptor
antagonists.10
In the initial study, a variety of bifunctional amine
thiourea catalysts (10 mol %)11,12 were screened for the
proposed catalytic enantioselective Michael addition of
nitromethane 2a to indolylidene-cyanoacetate 1a without
a solvent (Table 1). We found that the reaction proceeded
smoothly to afford the desired product 3a in high yields
(92ꢀ99%, entries 1ꢀ8) with moderate dr, but the enantio-
selectivities varied. Among the catalysts probed, catalyst
IV13 gave the highest ee value (77% ee, entry 4). Therefore,
it was selected for further optimization of the reaction
conditions. It appeared that when the reaction was carried
out in a solvent, regardless of polarity (entries 4 and 9ꢀ16),
they were detrimental to the enantioselectivity and longer
reaction times were required. Lowering the reaction
(4) For recent reviews of organocatalytic conjugate addition reac-
tions, see: (a) Tsogoeva, S. B. Eur. J. Org. Chem. 2007, 2007, 1701.
ꢀ
(b) Almas-i, D.; Alonso, D. A.; Najera, C. Tetrahedron: Asymmetry 2007,
18, 299. Recent selected examples of conjugate addition of nitroalkanes,:
enals as Michael acceptors: (c) Ghosh, S. K.; Zheng, Z.; Ni, B. Adv.
Synth. Catal. 2010, 352, 2378. (d) Maltsev, O. V.; Kucherenko, A. S.;
Beletskaya, I. P.; Tartakovsky, V. A.; Zlotin, S. G. Eur. J. Org. Chem.
2010, 2927. (e) Mager, I.; Zeitler, K. Org. Lett. 2010, 12, 1480. (f) Zhang,
J.-M.; Lou, C.-L.; Hu, Z.-P.; Yan, M. ARKIVOC 2009, 362. (g) Wang,
Y.; Li, P.; Liang, X.; Zhang, T. Y.; Ye, J. Chem. Commun. 2008, 1232.
(h) Gotoh, H.; Ishikawa, H.; Hayashi, Y. Org. Lett. 2007, 9, 5307.
Enones: (i) Kwiatkowski, P.; Dudzinski, K.; Lyzwa, D. Org. Lett. 2011,
13, 3624. (j) Manzano, R.; Andres, J. M.; Alvarez, R.; Muruzabal,
M. D.; de Lera, A. R.; Pedrosa, R. Chem.;Eur. J. 2011, 17, 5931.
(k) Yang, W.; Du, D.-M. Org. Lett. 2010, 12, 5450. (l) Yang, Y.-Q.; Chen,
X.-K.; Xiao, H.; Liu, W.; Zhao, G. Chem. Commun. 2010, 46, 4130. (m) Lu,
H.-H.; Wang, X.-F.; Yao, C.-J.; Zhang, J.-M.; Wu, H.; Xiao, W.-J. Chem.
Commun. 2009, 4251. (n) Pansare, S. V.; Lingampally, R. Org. Biomol.
Chem. 2009, 7, 319. (o) Malmgren, M.; Granander, J.; Amedjkouh, M.
Tetrahedron: Asymmetry 2008, 19, 1934. (p) Ballini, R.; Barboni, L.;
Castrica, L.; Fringuelli, F.; Lanari, D.; Pizzo, F.; Vaccaro, L. Adv. Synth.
Catal. 2008, 350, 1218. (q) Li, P.; Wang, Y.; Liang, X.; Ye, J. Chem.
Commun. 2008,3302. (r) Vakulya, B.; Varga, S.; Soos, T. J. Org. Chem. 2008,
73, 3475. (s) Linton, B. R.; Reutershan, M. H.; Aderman, C. M.; Richardson,
E. A.; Brownell, K. R.; Ashley, C. W.; Evans, C. A.; Miller, S. J. Tetrahedron
Lett. 2007, 48, 1993. Nitroolefins: (t) Dong, X.-Q.; Teng, H.-L.; Wang, C.-J.
Org. Lett. 2009, 11, 1265. (u) Rabalakos, C.; Wulff, W. D. J. Am. Chem. Soc.
2008, 130, 13524. (v) Yang, X.; Zhou, X.; Lin, L.; Chang, L.; Liu, X.; Feng, X.
Angew. Chem., Int. Ed. 2008, 47, 7079. Sulfones: (w) Zhu, Q.; Lu, Y.-X. Org.
Lett. 2009, 11, 1721. Esters: (x) Ooi, T.; Fujioka, S.; Maruoka, K. J. Am.
Chem. Soc. 2004, 126, 11790.
(5) Studies from our group: (a) Mei, K.; Jin, M.; Zhang, S.-L.; Li, P.;
Liu, W.-J.; Chen, X.-B.; Xue, F.; Duan, W.-H.; Wang, W. Org. Lett.
2009, 11, 2864. (b) Zu, L.; Xie, H.; Li, H.; Wang, J.; Wang, W. Adv.
Synth. Catal. 2007, 349, 2660. (c) Wang, J.; Li, H.; Zu, L.; Jiang, W.;
Wang, W. Adv. Synth. Catal. 2006, 348, 2047. (d) Wang, J.; Li, H.; Zu,
L.; Jiang, W.; Xie, H.; Duan, W.-H.; Wang, W. J. Am. Chem. Soc. 2006,
128, 12652.
(6) Berner, O. M.; Tedeschi, L.; Enders, D. Eur. J. Org. Chem. 2002,
1877.
(7) (a) Galloway, W. R. J. D.; Isidro-Llobet, A.; Spring, D. R. Nature
Commun. 2010, 1, Gal1/1–Gal1/13. (b) Nielsen, T. E.; Schreiber, S. L.
Angew. Chem., Int. Ed. 2008, 47, 48.
(2) (a) For a review, see: Zhou, F.; Liu, Y.-L.; Zhou, J. Adv. Synth.
Catal. 2010, 352, 1381. For recent selected examples, see: (b) Chauhan,
P.; Chimni, S. S. Chem.;Eur. J. 2010, 16, 7709. (c) Wang, X.-N.; Zhang,
Y.-Y.; Ye, S. Adv. Synth. Catal. 2010, 352, 1892.(d)Guo, Q.; Bhanushali,
M.; Zhao, C.-G. Angew. Chem., Int. Ed. 2010, 49, 9460. (e) Bui, T.;
Candeias, N. R.; Barbas, C. F., III. J. Am. Chem. Soc. 2010, 132, 5574.
(f) Li, X.; Luo, S.; Cheng, J.-P. Chem.;Eur. J. 2011, 16, 14290.
(g) Guang, X.-Y.; Wei, Y.; Shi, M. Chem.;Eur. J. 2010, 16, 13617.
(h) Aikawa, K.; Mimura, S.; Numata, Y.; Mikami, K. Eur. J. Org. Chem.
2011, 62. (i) Zheng, K.; Yin, C.; Liu, X.; Lin, L.; Feng, X. Angew. Chem.,
Int. Ed. 2011, 50, 2573. (j) Zhang, Z.; Zheng, W.; Antilla, J. C. Angew.
Chem., Int. Ed. 2011, 50, 1135. (k) Jiang, X.; Cao, Y.; Wang, Y.; Liu, L.;
Shen, F.; Wang, R. J. Am. Chem. Soc. 2010, 132, 15328. (l) Zhao, M.-X.;
Tang, W.-H.; Chen, M.-X.; Wei, D.-K.; Dai, T.-L.; Shi, M. Eur. J. Org.
Chem. 2011, 6078. (m) Allous, I.; Comesse, S.; Sanselme, M.; Daich, A.
Eur. J. Org. Chem. 2011, 5303. (n) Peng, J.; Huang, X.; Jiang, L.; Cui,
H.-L.; Chen, Y.-C. Org. Lett. 2011, 13, 4584. (o) Duan, S.-W.; Lu,
H.-H.; Zhang, F.-G.; Xuan, J.; Chen, J.-R.; Xiao, W.-J. Synthesis 2011,
1847. (p) Lee, H. J.; Kang, S. H.; Kim, D. Y. Synlett 2011, 1559.
(q) Zhong, F.; Han, X.; Wang, Y.; Lu, Y.-X. Angew. Chem., Int. Ed.
2011, 50, 7837. (r) Alluri, S.; Feng, H.; Livings, M.; Samp, L.; Biswas, D.;
Lam, T. W.; Lobkovsky, E.; Ganguly, A. K. Tetrahedron Lett. 2011, 52,
3945. (s) Tan, B.; Candeias, N. R.; Barbas, C. F., III. Nature Chem. 2011,
3, 473. (t) Liu, X.-L.; Wu, Z.-J.; Du, X.-L.; Zhang, X.-M.; Yuan, W.-C.
J. Org. Chem. 2011, 76, 4008. (u) Freund, M. H.; Tsogoeva, S. B. Synlett
2011, 503. (v) Liu, Z.; Gu, P.; Shi, M.; McDowell, P.; Li, G. Org. Lett.
2011, 13, 2314. (w) Singh, A.; Roth, G. P. Org. Lett. 2011, 13, 2118.
(x) Hande, S. M.; Nakajima, M.; Kamisaki, H.; Tsukano, C.; Takemoto,
Y. Org. Lett. 2011, 13, 1828. (y) Pesciaioli, F.; Righi, P.; Mazzanti, A.;
Bartoli, G.; Bencivenni, G. Chem.;Eur. J. 2011, 17, 2842. (z) Zheng,
W.; Zhang, Z.; Kaplan, M. J.; Antilla, J. C. J. Am. Chem. Soc. 2011, 133,
3339. (aa) Ding, M.; Zhou, F.; Liu, C.-H.; Wang, Y.-L.; Zhao, X.-L.;
Zhou, J. Chem. Sci. 2011, 2, 2035.
ꢀ
(3) For a recent review, see: Cordova, A. Catalytic Asymmetric
Conjugate Addition Reactions; Wiley-VCH: Weinheim, 2010.
Org. Lett., Vol. 14, No. 1, 2012
135