ORGANIC
LETTERS
2012
Vol. 14, No. 1
226–229
Pd-Catalyzed Olefination of Furans and
Thiophenes with Allyl Esters
Yuexia Zhang, Zejiang Li, and Zhong-Quan Liu*
State Key Laboratory of Applied Organic Chemistry, Lanzhou University,
Lanzhou Gansu 730000, P. R. China
Received November 8, 2011
ABSTRACT
A direct Pd(II)-catalyzed olefination of furans and thiophenes with allyl esters is demonstrated. Under the typical conditions, the dehydrogenative
Heck coupling reactions of heteroarenes with allylic esters proceeded via a β-H elimination rather than a β-OAc elimination to give the
corresponding γ-substituted allylic esters.
The Pd-catalyzed direct cross-couplings of arenes with
alkenes, which are called an oxidative Heck reaction,1 an
intermolecular dehydrogenative Heck reaction (DHR),2
or a FujiwaraÀMoritani reaction,3 have drawn much
attention in recent years. Among them, several efficient
olefinations of heteroarenes with alkenes have also been
developed by Fujiwara,4 Itahara,5 Gaunt,6 Yu,7 Le Bras
and Muzart,8 Zhang,9 Satoh and Miura,10 and Jiang11
et al.12 Despite significant progress in DHRs, most of them
suffer from limited substrate scope to electron-deficient olefins
and styrenes as the coupling partners. Thus, new systems with
a broad substrate scope would be highly desirable. Herein, we
wish to report the first example of a Pd-catalyzed direct
oxidative olefination of furans and thiophenes with electron-
rich alkenes such as allyl esters and ethers.
(1) (a) Heck, R. F. Org. React. 1982, 27, 345. (b) Rauf, W.; Thompson,
A. L.; Brown, J. M. Chem. Commun. 2009, 3874. (c) Rodriguez, A.;
Moran, W. J. Eur. J. Org. Chem. 2009, 1313. (d) Ferreira, E. M.; Zhang,
H.; Stoltz, B. M. In The MizorokiÀHeck Reaction; Oestreich, M., Ed.;
Wiley: Chichester, 2009; pp 345À382. (e) Karimi, B.; Behzadnia, H.;
Elhamifar, D.; Akhavan, P. F.; Esfahani, F. K.; Zamani, A. Synthesis
2010, 1399.
Allyl esters have been widely applied as allylation
reagents to form a CÀC bond in organic synthesis.13
(2) For an excellent review, see: Le Bras, J.; Muzart, J. Chem. Rev.
2011, 111, 1170.
(7) (a) Li, J.-J.; Mei, T.-S.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47,
6452. (b) Zhang, Y.-H.; Shi, B.-F.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131,
5072. (c) Ye, M.; Gao, G.-L.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 6964.
(8) (a) Aouf, C.; Thiery, E.; Le Bras, J.; Muzart, J. Org. Lett. 2009, 11,
4096. (b) Vasseur, A.; Muzart, J.; Le Bras, J. Chem.;Eur. J. 2011, 17, 12556.
(9) (a) Zhao, J.; Huang, L.; Cheng, K.; Zhang, Y. Tetrahedron Lett. 2009,
50, 2758. (b) Yang, Y.; Cheng, K.; Zhang, Y. Org. Lett. 2009, 11, 5606.
(10) (a) Maehara, A.; Satoh, T.; Miura, M. Tetrahedron 2008, 64,
5982. (b) Miyasaka, M.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem.
2010, 75, 5421.
(3) For selected reviews of FujiwaraÀMoritani oxidative Heck reac-
tions, see: (a) Moritani, I.; Fujiwara, Y. Synthesis 1973, 524. (b) Dyker,
G. Angew. Chem., Int. Ed. 1999, 38, 1698. (c) Fujiwara, Y.; Jia, C. Pure
Appl. Chem. 2001, 73, 319. (d) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc.
Chem. Res. 2001, 34, 633. (e) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem.
Rev. 2002, 102, 1731. (f) Kakiuchi, F.; Chatani, N. Adv. Synth. Catal.
2003, 345, 1077. (g) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q.
Angew. Chem., Int. Ed. 2009, 48, 5094. (h) Lyons, T. W.; Sanford, M. S.
Chem. Rev. 2010, 110, 1147. (i) Satoh, T.; Miura, M. Synthesis 2010,
3395. (j) Satoh, T.; Miura, M. Chem.;Eur. J. 2010, 16, 11212.
(4) (a) Asano, R.; Moritani, I.; Fujiwara, Y.; Teranishi, S. Bull. Chem.
Soc. Jpn. 1973, 46, 663. (b) Fujiwara, Y.; Maruyama, O.; Yoshidomi, M.;
Taniguchi, H. J. Org. Chem. 1981, 46, 851. (c) Maruyama, O.; Fujiwara,
Y.; Taniguchi, H. Bull. Chem. Soc. Jpn. 1981, 46, 2851.
(5) (a) Itahara, T.; Kawasaki, K.; Ouseto, F. Synthesis 1984, 236.
(b) Itahara, T.; Ouseto, F. Synthesis1984, 488. (c) Itahara, T.; Kawasaki,
K.; Ouseto, F. Bull. Chem. Soc. Jpn. 1984, 57, 3488. (d) Itahara, T.
J. Org. Chem. 1985, 50, 5546.
(6) (a) Grimster, N. P.; Gauntlett, C.; Godfrey, C. R. A.; Gaunt, M. J.
Angew. Chem., Int. Ed. 2005, 44, 3125. (b) Beck, E. M.; Hatley, G. R.;
Gaunt, M. J. J. Am. Chem. Soc. 2006, 128, 2528. (c) Beck, E. M.; Hatley,
R.; Gaunt, M. J. Angew. Chem., Int. Ed. 2008, 47, 3004.
(11) ang, H.; Feng, Z.; Wang, A.; Liu, X.; Chen, Z. Eur. J. Org. Chem.
2010, 1227.
(12) (a) Capito, E.; Brown, J. M.; Ricci, A. Chem. Commun. 2005,
ꢀ
ꢀ
1854. (b) Garcıa-Rubia, A.; Gomez Arrayas, R.; Carretero, J. C. Angew.
Chem., Int. Ed. 2009, 48, 6511. (c) Cheng, D.; Gallagher, T. Org. Lett.
2009, 11, 2639. (d) Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc.
2008, 130, 9254. (e) Wu, J.; Cui, X.; Chen, L.; Jiang, G.; Wu, Y. J. Am.
Chem. Soc. 2009, 131, 13888.
(13) For selected reviews, see: (a) Trost, B. M. Acc. Chem. Res. 1980,
13, 385. (b) Tsuji, J. Pure Appl. Chem. 1999, 71, 1539. (c) Marshall, J. A.
Chem. Rev. 2000, 100, 3163. (d) Schobert, R.; Gordon, G. J. Curr. Org.
Chem. 2002, 6, 1181. (e) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003,
103, 2921. (f) Pan, D.; Jiao, N. Synlett 2010, 1577.
r
10.1021/ol203013p
Published on Web 12/14/2011
2011 American Chemical Society