6980
J. Kim et al. / Bioorg. Med. Chem. Lett. 21 (2011) 6977–6981
Table 3
Inhibition of breast cancer cell (T47D) proliferation by representative
aminopyrimidine derivatives
9
19
21
T47D IC50
(lM)
9.6
8.5
4.7
deeper pocket in PI3Kb. These results clearly provide useful insight
in the design of new PI3Kb inhibitors with high potency and
selectivity.
Acknowledgments
This research was supported by National Research Foundation
of Korea (NRF) funded by the Ministry of Education, Science and
Technology (NRF-2011-0003609, 2011-0026680, 2011-0016436
and 2011-0020322).
References and notes
Figure 3. Calculated binding mode of 9 in the ATP-binding site of the PI3Kb
homology model. In this model, the aminopyrimidine unit forms a key hinge region
hydrogen bond with the backbone of Val854. Selected residues (Try839 and Lys805)
are shown for possible hydrogen bonding interaction with pyridyl sulfonamide
subunit. Each dotted line indicates a hydrogen bond.
1. Vanhaesebroeck, B.; Leevers, S. J.; Khatereh, A.; Timms, J.; Katso, R.; Driscoll, P.
C.; Woscholski, R.; Parker, P. J.; Waterfield, M. D. Annu. Rev. Biochem. 2001, 70,
535.
2. (a) Cantley, L. C. Science 2002, 296, 1655; (b) Ward, S. G.; Finan, P. Curr. Opin.
Pharmacol. 2003, 3, 426; (c) Oudit, G. Y.; Sun, H.; Kerfant, B. G.; Crackower, M.
A.; Penninger, J. M.; Backx, P. H. J. Mol. Cell Cardiol. 2004, 37, 449.
3. (a) Brader, S.; Eccles, S. A. Tumori 2004, 90, 2; (b) Samuels, Y.; Wang, Z.; Bardelli,
A.; Silliman, N.; Ptak, J.; Szabo, S.; Yan, H.; Gazdar, A.; Powell, S. M.; Riggins, G.
J.; Willson, J. K.; Markowitz, S.; Kinzler, K. W.; Vogelstein, B.; Velculescu, V. E.
Science 2004, 304, 554; (c) Wymann, M. P.; Marone, R. Curr. Opin. Cell. Biol.
2005, 17, 141; (d) Parsons, D. W.; Wang, T.-L.; Samuels, Y.; Bardelli, A.;
Cummins, J. M.; DeLong, L.; Silliman, N.; Ptak, J.; Szabo, S.; Willson, J. K.;
Markowitz, S.; Kinzler, K. W.; Vogelstein, B.; Lengauer, C.; Velculescu, V. E.
Nature 2005, 436, 792; (e) Kang, S.; Bader, A. G.; Vogt, P. K. Proc. Natl. Acad. Sci.
U.S.A. 2005, 102, 802; (f) Fan, Q.-W.; Knight, A. A.; Goldenberg, D. D.; Yu, W.;
Mostov, K. E.; Stokoe, D.; Shokat, K. M.; Weiss, W. A. Cancer Cell 2006, 9, 341.
4. Jackson, S. P.; Schoenwaelder, S. M.; Goncalves, I.; Nesbitt, W. S.; Yap, C. L.;
Wright, C. E.; Kenche, V.; Anderson, K. E.; Dopheide, S. M.; Yuan, Y.; Sturgeon, S.
A.; Prabaharan, H.; Thompson, P. E.; Smith, G. E.; Shepherd, P. R.; Daniele, N.;
Kulkarni, S.; Abbott, B.; Saylik, D.; Jones, C.; Lu, L.; Giuliano, S.; Hughan, S. C.;
Angus, J. A.; Robertson, A. D.; Salem, H. H. Nat. Med. 2005, 11, 50711.
5. (a) Jia, S.; Liu, Z.; Zhang, S.; Liu, P.; Zhang, L.; Lee, S. H.; Zhang, J.; Signoretti, S.;
Loda, M.; Roberts, T. M.; Zhao, J. J. Nature 2008, 454, 776; (b) Wee, S.;
Wiederschain, D.; Maira, S. M.; Loo, A.; Miller, C.; Debeaumont, R.; Stegmeier,
F.; Yao, Y. M.; Lengauer, C. Proc. Natl Acad. Sci. U.S.A. 2008, 105, 13057; (c) Lee, S.
H.; Poulogiannis, G.; Pyne, S.; Jia, S.; Zou, L.; Signoretti, S.; Loda, M.; Cantley, L.
C.; Roberts, T. M. Proc. Natl Acad. Sci. U.S.A. 2010, 107, 11002; (d) Carvalho, S.;
Milanezi, F.; Costa, J. L.; Amendoeira, I.; Schmitt, F. Virchows Arch. 2010, 456,
235; (e) Hill, K. M.; Kalifa, S.; Das, J. R.; Bhatti, T.; Gay, M.; Williams, D.;
Taliferro-Smith, L.; De Marzo, A. M. Prostate 2010, 70, 755.
Compound 9 may be further stabilized in the ATP-binding site via
the hydrophobic interactions among its nonpolar groups with the
side chains in the back pocket (DFG-motif, gate keeper and cata-
lytic lysine). The selectivity enhancement of 9 seems to be the re-
sult of accessing the more hydrophobic region within PI3Kb.
Docking modeling suggests that the difference of several residues
between PI3Kb and PI3Ka causes a difference in the depth of the
phenyl group binding pockets that is responsible for the increased
selectivity observed for the aminopyrimidine analogs with aryl-
sulfonamide subunit. It was expected that the presence of aryl ring
on sulfonamide group (in red circle, Fig. 3) would allow for a favor-
able hydrophobic interaction with salt bridge (Lys782–Asp923)
which is missing in alpha isoform (PI3K
This hydrophobic interaction seems to introduce affinity for PI3Kb
and explains weaker binding affinity for PI3K . Moreover, phenyl
group is also directed toward a hydrophobic pocket located behind
Asp862 whch is unique to PI3Kb ( , Gln859; d, Asn836;
a
: Ala775 and Ser919).10
a
a
c,
Lys890).10 These amino acid residues may create a deeper binding
pocket in PI3Kb, which accommodates the aryl ring of sulfonamide
derivatives without causing unfavorable steric contacts. The mod-
eling analysis similarly applies to analogs with larger aryl groups
(e.g., naphthyl group) which seem to be accommodated by this
binding pocket in PI3Kb.
6. Jackson, S. P.; Schoenwaelder, S. M.; Goncalves, I.; Nesbitt, W. S.; Yap, C. L.;
Wright, C. E.; Kenche, V.; Anderson, K. E.; Dopheide, S. M.; Yuan, Y. Nat. Med.
2005, 11, 507.
7. (a) Knight, S. D.; Adams, N. D.; Burgess, J. L.; Chaudhari, A. M.; Darcy, M. G.;
Donatelli, C. A.; Luengo, J. I.; Newlander, K. A.; Parrish, C. A.; Ridgers, L. H.;
Sarpong, M. A.; Schmidt, S. J.; Van Aller, G. S.; Carson, J. D.; Diamond, M. A.;
Elkins, P. A.; Gardiner, C. M.; Garver, E.; Gilbert, S. A.; Gontarek, R. R.; Jackson, J.
R.; Kershner, K. L.; Luo, L.; Raha, K.; Sherk, C. S.; Sung, C. M.; Sutton, D.;
Tummino, P. J.; Wegrzyn, R. J.; Auger, K. R.; Dhanak, D. A. C. S. Med. Chem. Lett.
2010, 1, 39; (b) Hong, S.; Lee, S.; Kim, B.; Lee, H.; Hong, S.-S.; Hong, S. Bioorg.
Med. Chem. Lett. 2010, 20, 7212; (c) Kim, O.; Jeong, Y.; Lee, H.; Hong, S.-S.; Hong,
S. J. Med. Chem. 2011, 54, 245; (d) Stec, M. M.; Andrews, K. L.; Booker, S. K.;
Caenepeel, S.; Freeman, D. F.; Jiang, J.; Liao, H.; McCarter, J.; Mullady, E. L.;
Miguel, T. S.; Subramanian, R.; Tamayo, N.; Wang, L.; Yang, K.; Zalameda, L. P.;
Zhang, N.; Hughes, P. E.; Norman, M. H. J. Med. Chem. 2011, 54, 5174; (e) Noel,
D.; D’Angelo, N. D.; Kim, T.-S.; Andrews, K.; Booker, S. K.; Caenepeel, S.; Chen,
K.; D’Amico, D.; Freeman, D.; Jiang, J.; Liu, L.; McCarter, J. D.; Miguel, T. S.;
Mullady, E. L.; Schrag, M.; Subramanian, R.; Tang, J.; Wahl, R. C.; Wang, L.;
Whittington, D. A.; Wu, T.; Xi, N.; Xu, Y.; Yakowec, P.; Yang, K.; Zalameda, L. P.;
Zhang, N.; Hughes, P.; Norman, M. H. J. Med. Chem. 2011, 54, 1789.
8. Fabian, M. A.; Biggs, W. H., III; Treiber, D. K.; Atteridge, C. E.; Azimioara, M. D.;
Bendetti, M. G.; Carter, T. A.; Ciceri, P.; Edeen, P. T.; Floyd, M.; Ford, J. M.; Galvin,
M.; Gerlach, J. L.; Grotzfeld, R. M.; Herrgard, S.; Insko, D. E.; Insko, M. A.; Lai, A.
G.; Lelias, J.-M.; Mehta, S. A.; Milanov, Z. V.; Velasco, A. M.; Wodicka, L. M.;
Patel, H. K.; Zarrinkar, P. P.; Lockhart, D. J. Nat. Biotechnol. 2005, 23, 329.
9. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.;
Olson, A. J. J. Comput. Chem. 1998, 19, 1639.
Given the impressive enzyme activity profiles, several com-
pounds from this series were further tested for cellular prolifera-
tion activity. To measure the inhibitory effect of compounds on
cell growth, cell viability was tested by 3-(4,5-dimethylthiazol-2-
yl-2,5-diphenyltetrazolium bromide (MTT) assay in T47D human
breast cancer cell cultures. Notably, compounds 9, 19, and 21
showed promising inhibitory activity against T47D at micromolar
concentration (Table 3).
In conclusion, a new series of aminopyridine-based PI3Kb inhib-
itors Ref.11 have been developed by the structure-based design.
When incorporated with the phenyl sulfonamide moiety, amino-
pyrimidine analogs showed good potency on PI3Kb and selectivity
over PI3K
amide with larger groups, such as naphtyl group enhanced selec-
tivity over PI3K while retaining submicromolar PI3Kb potency.
a. Intriguingly, replacement of phenyl group on sulfon-
a
Molecular modeling suggests that increased PI3Kb selectivity is
caused by salt bridge (Lys782–Asp923) and Asp862 that creat a
10. (a) Frazzetto, M.; Suphioglu, C.; Zhu, J.; Schmidt-Kittler, O.; Jennings, I. G.;
Cranmer, S. L.; Jackson, S. P.; Kinzler, K. W.; Vogelstein, B.; Thompson, P. E.