7316
K. J. Brocklehurst et al. / Bioorg. Med. Chem. Lett. 21 (2011) 7310–7316
2. (a) Overton, H. A.; Babbs, A. J.; Doel, S. M.; Fyfe, M. C. T.; Gardner, L. S.; Griffin,
G.; Jackson, H. C.; Procter, M. J.; Rasamison, C. M.; Tang-Christensen, M.;
Widdowson, P. S.; Williams, G. M.; Reynet, C. Cell Metab. 2006, 3, 167; (b) Chu,
Z.; Carroll, C.; Chen, R.; Alfonso, J.; Gutierrez, V.; He, H.; Lucman, A.; Xing, C.;
Sebring, K.; Zhou, J.; Wagner, B.; Unett, D.; Jones, R. M.; Behan, D. P.; Leonard, J.
Mol. Endocrinol. 2010, 24, 161.
3. (a) Chu, Z.; Jones, R. M.; He, H.; Carroll, C.; Gutierrez, V.; Lucman, A.; Moloney,
M.; Gao, H.; Mondala, H.; Bagnol, D.; Unett, D.; Liang, Y.; Demarest, K.; Semple,
G.; Behan, D. P.; Leonard, J. Endocrinology 2007, 148, 2601; (b) Chu, Z.; Carroll,
C.; Alfonso, J.; Gutierrez, V.; He, H.; Lucman, A.; Pedraza, M.; Mondala, H.; Gao,
H.; Bagnol, D.; Chen, R.; Jones, R. M.; Behan, D. P.; Leonard, J. Endocrinology
2008, 149, 2038.
Ohishi, T.; Matsui, T.; Shibasaki, M. Biochem. Biophys. Res. Commun. 2010, 400,
745; (d) Yoshida, S.; Ohishi, T.; Matsui, T.; Tanaka, H.; Oshima, H.; Yonetoku, Y.;
Shibasaki, M. Diabetes. Obes. Metab. 2011, 13, 34.
11. GPR119 agonists were tested on HEK293S cells over-expressing human
GPR119. Changes in cAMP concentrations were assessed using the cAMP
dynamic 2 HTRF kit (Cisbio). Cells were diluted in assay buffer (20 mM HEPES
pH 7.4, Hank’s Balanced Salt Solution, 0.01% BSA, 1 mM IBMX) and used at
2 Â 103 cells/well in 384-well plates. Cells were incubated with compound for
45 min before addition of HTRF lysis and detection reagents according to the
manufacturer’s protocol. Fluorescence readings were captured using an
Envision plate reader and cAMP concentrations calculated using a standard
curve.
4. (a) Shah, U.; Kowalski, T. J. In Vitamins & Hormones; Litwack, Gerald, Ed.;
Academic Press, 2010; Vol. 84, pp 415–448; (b) Jones, R. M.; Leonard, J. N.;
Buzard, D. J.; Lehmann, J. Expert Opin. Ther. Patents 2009, 19, 1339; (c) Shah, U.
Curr. Opin. Drug Discov. Dev. 2009, 12, 519; (d) Fyfe, M. C. T.; McCormack, J. G.;
Overton, H. A.; Procter, M. J.; Reynet, C. Expert Opin. Drug Discov. 2008, 3, 403;
Jones, R. M.; Leonard, J. N. In Annual Reports in Medicinal Chemistry; Macor, John
E., Ed.; Academic Press, 2009; Vol. 44, pp 149–170.
5. Semple, G.; Fioravanti, B.; Pereira, G.; Calderon, I.; Uy, J.; Choi, K.; Xiong, Y.; Ren,
A.; Morgan, M.; Dave, V.; Thomsen, W.; Unett, D. J.; Xing, C.; Bossie, S.; Carroll,
C.; Chu, Z.; Grottick, A. J.; Hauser, E. K.; Leonard, J.; Jones, R. M. J. Med. Chem.
2008, 51, 5172.
12. The efficacy was expressed as the percent effect compared to that of the
control, 50 lM oleoylethanolamide, defined as 100%.
13. LogD and solubility measurements were made as described in: Buttar, D.;
Colclough, N.; Gerhardt, S.; MacFaul, P. A.; Phillips, S. D.; Plowright, A.;
Whittamore, P.; Tam, K.; Maskos, K.; Steinbacher, S.; Steuber, H. Bioorg. Med.
Chem. 2010, 18, 7486.
14. Leeson, P. D.; Springthorpe, B. Nat. Rev. Drug Disc. 2007, 6, 881.
15. For a recent example of LLE being used out-with an inhibitors/antagonists
context see: Waring, M. J.; Johnstone, C.; McKerrecher, D.; Pike, K. G.; Robb, G.
Med. Chem. Commun. 2011, 2, 775.
16. hERG measurements were made as described in: Bridgland-Taylor, M. H.;
Hargreaves, A. C.; Easter, A.; Orme, A.; Henthorn, D. C.; Ding, M.; Davis, A. M.;
Small, B. G.; Heapy, C. G.; Abi-Gerges, N.; Persson, F.; Jacobson, I.; Sullivan, M.;
Albertson, N.; Hammond, T. G.; Sullivan, E.; Valentin, J.-P.; Pollard, C. E. J.
Pharmacol. Toxicol. Methods 2006, 54, 189.
6. Semple, G.; Ren, A.; Fioravanti, B.; Pereira, G.; Calderon, I.; Choi, K.; Xiong, Y.;
Shin, Y.; Gharbaoui, T.; Sage, C. R.; Morgan, M.; Xing, C.; Chu, Z.; Leonard, J. N.;
Grottick, A. J.; Al-Shamma, H.; Liang, Y.; Demarest, K. T.; Jones, R. M. Bioorg.
Med. Chem. Lett. 2011, 21, 3134.
7. Wu, Y.; Kuntz, J. D.; Carpenter, A. J.; Fang, J.; Sauls, H. R.; Gomez, D. J.; Ammala,
C.; Xu, Y.; Hart, S.; Tadepalli, S. Bioorg. Med. Chem. Lett. 2010, 20, 2577.
8. (a) McClure, K. F.; Darout, E.; Guimarães, C. R. W.; DeNinno, M. P.; Mascitti, V.;
Munchhof, M. J.; Robinson, R. P.; Kohrt, J.; Harris, A. R.; Moore, D. E.; Li, B.; Samp,
L.; Lefker, B. A.; Futatsugi, K.; Kung, D.; Bonin, P. D.; Cornelius, P.; Wang, R.; Salter,
E.; Hornby, S.; Kalgutkar, A. S.; Chen, Y. J. Med. Chem. 2011, 54, 1948; (b) Mascitti,
V.; Stevens, B. D.; Choi, C.; McClure, K. F.; Guimarães, C. R. W.; Farley, K. A.;
Munchhof, M. J.; Robinson, R. P.; Futatsugi, K.; Lavergne, S. Y.; Lefker, B. A.;
Cornelius, P.; Bonin, P. D.; Kalgutkar, A. S.; Sharma, R.; Chen, Y. Bioorg. Med. Chem.
Lett. 2011, 21, 1306; (c) Kalgutkar, A. S.; Mascitti, V.; Sharma, R.; Walker, G. W.;
Ryder, T.; McDonald, T. S.; Chen, Y.; Preville, C.; Basak, A.; McClure, K. F.; Kohrt, J.
T.; Robinson, R. P.; Munchhof, M. J.; Cornelius, P. Chem. Res. Toxicol. 2011, 24, 269.
9. (a) Szewczyk, J. W.; Acton, J.; Adams, A. D.; Chicchi, G.; Freeman, S.; Howard, A.
D.; Huang, Y.; Li, C.; Meinke, P. T.; Mosely, R.; Murphy, E.; Samuel, R.; Santini,
C.; Yang, M.; Zhang, Y.; Zhao, K.; Wood, H. B. Bioorg. Med. Chem. Lett. 2011, 21,
2665; (b) Xia, Y.; Chackalamannil, S.; Greenlee, W. J.; Jayne, C.; Neustadt, B.;
Stamford, A.; Vaccaro, H.; Xu, X.; Baker, H.; O’Neill, K.; Woods, M.; Hawes, B.;
Kowalski, T. Bioorg. Med. Chem. Lett. 2011, 21, 3290.
17. Comita-Prevoir, J.; Cronin, M.; Geng, B.; Godfrey, A. A.; Reck, F.
WO2008071961, 2008.
18. Basarab, G.; Dangel, B.; Fleming, P. R.; Gravestock, M. B.; Green, O.; Hauck, S. I.;
Hill, P.; Hull, K. G.; Mullen, G.; Sherer, B.; Zhou, F. WO2006087543, 2006.
19. Jamieson, C.; Moir, E. M.; Rankovic, Z.; Wishart, G. J. Med. Chem. 2006, 49, 5029.
20. This predicted reduction in pKa is in good agreement with values reported in
the literature for 3-fluoro-piperidines adopting an axial comformation. For
examples see: (a) van Niel, M. B.; Collins, I.; Beer, M. S.; Broughton, H. B.;
Cheng, S. K. F.; Goodacre, S. C.; Heald, A.; Locker, K. L.; MacLeod, A. M.;
Morrison, D.; Moyes, C. R.; O’Connor, D.; Pike, A.; Rowley, M.; Russell, M. G. N.;
Sohal, B.; Stanton, J. A.; Thomas, S.; Verrier, H.; Watt, A. P.; Castro, J. L. J. Med.
Chem. 1999, 42, 2087; (b) Morgenthaler, M.; Schweizer, E.; Hoffmann-Röder,
A.; Benini, F.; Martin, R.; Jaeschke, G.; Wagner, B.; Fischer, H.; Bendels, S.;
Zimmerli, D.; Schneider, J.; Diederich, F.; Kansy, M.; Müller, K. Chem. Med.
Chem. 2007, 2, 1100.
21. DMSO is used as a solvent to dissolve polar and non polar compounds, while
the cyclodextrins are used as solubilising agents to increase the water
solubility of lipophilic compounds. This vehicle is commonly used in drug
discovery, with the volume of DMSO being within the acceptable limits. The
vehicle is well tolerated in all three pre-clinical species. The concentration of
hydroxylpropyl beta cyclodextrin used in the study was 25% w/v.
10. (a) Yoshida, S.; Ohishi, T.; Matsui, T.; Shibasaki, M. Biochem. Biophys. Res.
Commun. 2010, 400, 437; (b) Yoshida, S.; Ohishi, T.; Matsui, T.; Tanaka, H.;
Oshima, H.; Yonetoku, Y.; Shibasaki, M. Biochem. Biophys. Res. Commun. 2010,
402, 280; (c) Yoshida, S.; Tanaka, H.; Oshima, H.; Yamazaki, T.; Yonetoku, Y.;