Journal of the American Chemical Society
Communication
2809. (g) Rubina, M.; Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc.
2003, 125, 7198. (h) Fang, G.-H.; Yan, Z.-J.; Deng, M.-Z. Org. Lett.
2004, 6, 357. (i) Charette, A. B.; Mathieu, S.; Fournier, J.-F. Synlett
2005, 1779. For stereospecific cross-coupling of enantioenriched 1-
arylethylboronic esters, see (j) Imao, D.; Glasspoole, B. W.; Laberge,
V. S.; Crudden, C. M. J. Am. Chem. Soc. 2009, 131, 5024. For cross-
coupling of alkylboron compounds having an acyclic, nonbenzylic
secondary alkyl group, see (k) Daini, M.; Suginome, M. J. Am. Chem.
Soc. 2011, 133, 4758.
making the boron atom more electropositive to strengthen the
intramolecular O−B coordination.18 This may be the major
reason for the enhanced enantiospecificity in the invertive
coupling reaction.
In conclusion, we have achieved a switch of stereochemical
course in enantiospecific cross-coupling at the boron-bound
stereogenic carbon center with high efficiency. The stereo-
specificity largely depends on the acidic additives: Zr(Oi-Pr)4·i-
PrOH made the reaction retentive, while PhOH resulted in the
invertive coupling with higher enantiospecificity than the
original reaction system in which no acidic additive was used.
Mechanistic details, as well as synthetic applications, of this
reaction are under investigation in our laboratory.
(7) For stereospecific cross-coupling of enantioenriched, α-chiral
alkylmagnesium and alkylzinc reagents generated in situ, see:
(a) Holzer, B.; Hoffmann, R. W. Chem. Commun. 2003, 732.
̈
(b) Campos, K. R.; Klapars, A.; Waldman, J. H.; Dormer, P. G.;
Chen, C. J. Am. Chem. Soc. 2006, 128, 3538.
(8) An alternative stereospecific cross-coupling of enantioenriched,α-
chiral alkyl electrophiles has also been reported. See (a) He, A.; Falck,
J. R. J. Am. Chem. Soc. 2010, 132, 2524. (b) Taylor, B. L. H.; Swift, E.
C.; Waetzig, J. D.; Jarvo, E. R. J. Am. Chem. Soc. 2011, 133, 389.
(9) For well-established synthetic routes to enantioenriched, α-chiral
alkylboronates, see (a) Matteson, D. S. In Boronic Acids; Hall, D. G.,
Ed.; Wiley-VCH; Weinheim, 2005; p 305. (b) Hayashi, T.;
Matsumoto, Y.; Ito, Y. Tetrahedron: Asymmetry 1991, 2, 601.
(c) Chea, H.; Sim, H.-S.; Yun, J. Adv. Synth. Catal. 2009, 351, 855.
(d) Stymiest, J. L.; Dutheuil, G.; Mahmood, A.; Aggarwal, V. K. Angew.
Chem., Int. Ed. 2007, 46, 7491.
(10) (a) Ohmura, T.; Awano, T.; Suginome, M. J. Am. Chem. Soc.
2010, 132, 13191. For a precedent report on the cross-coupling of
racemic α-(acylamino)benzylboronic esters, see (b) Ohmura, T.;
Awano, T.; Suginome, M. Chem. Lett. 2009, 38, 664.
́
(11) Sandrock, D. L.; Jean-Gerard, L.; Chen, C.; Dreher, S. D.;
Molander, G. A. J. Am. Chem. Soc. 2010, 132, 17108.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental details and characterization data of the products.
This material is available free of charge via the Internet at
AUTHOR INFORMATION
■
Corresponding Author
ACKNOWLEDGMENTS
■
This work is supported by Grant-in-Aid for Challenging
Exploratory Research (No. 23655082) from JSPS. T.A.
acknowledges JSPS for fellowship support.
(12) Lee, J. C. H.; McDonald, R.; Hall, D. G. Nat. Chem. 2011, 3,
894.
(13) The term enantiospecificity [% es = (product ee/starting
material ee) × 100] has been used to describe the conservation of
optical purity over the course of stereospecific reactions: (a) Denmark,
S. E.; Vogler, T. Chem.Eur. J. 2009, 15, 11737. (b) Denmark, S. E.;
Burk, M. T.; Hoover, A. J. J. Am. Chem. Soc. 2010, 132, 1232.
(14) 2-(Dicyclohexylphosphino)-2′,4′,6′-triisopropyl-1,1′-biphenyl.
Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.;
Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 6653.
(15) Absolute configuration was determined by comparison with the
specific rotation of the authentic samples. For details, see Supporting
Information.
(16) Use of BF3·OEt2, AlCl3, and TiCl4 resulted in decomposition of
1a and no formation of 3a.
REFERENCES
■
(1) (a) Malinakova, H. C. Chem.Eur. J. 2004, 10, 2636.
(b) Rudolph, A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 2656.
(c) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417.
(2) (a) Arp, F. O.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 10482.
(b) Saito, B.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 6694. (c) Caeiro,
J.; Sestelo, J. P.; Sarandeses, L. A. Chem.Eur. J. 2008, 14, 741.
(d) Owston, N. A.; Fu, G. C. J. Am. Chem. Soc. 2010, 132, 11908.
(e) Lu, Z.; Wilsily, A.; Fu, G. C. J. Am. Chem. Soc. 2011, 133, 8154.
(3) (a) Hayashi, T.; Konishi, M.; Fukushima, M.; Mise, T.; Kagotani,
M.; Tajika, M.; Kumada, M. J. Am. Chem. Soc. 1982, 104, 180.
(b) Hayashi, T.; Konishi, M.; Okamoto, Y.; Kabeta, K.; Kumada, M. J.
Org. Chem. 1986, 51, 3772.
(4) Hatanaka, Y.; Hiyama, T. J. Am. Chem. Soc. 1990, 112, 7793.
(5) For cross-coupling with inversion of configuration, see:
(a) Labadie, J. W.; Stille, J. K. J. Am. Chem. Soc. 1983, 105, 6129.
(b) Kells, K. W.; Chong, J. M. J. Am. Chem. Soc. 2004, 126, 15666. For
cross-coupling with retention of configuration, see (c) Falck, J. R.;
Bhatt, R. K.; Ye, J. J. Am. Chem. Soc. 1995, 117, 5973. (d) Lange, H.;
(17) Vaartstra, B. A.; Huffman, J. C.; Gradeff, P. S.; Hubert-Pfalzgraf,
L. G.; Daran, J.-C.; Parraud, S.; Yunlu, K.; Caulton, K. G. Inorg. Chem.
1990, 29, 3126.
(18) Activation of the boron center of allylic boronates by
coordination of Lewis and Brønsted acids to the boronate oxygen
has been proposed in allylboration of carbonyl compounds. See:
(a) Rauniyar, V.; Hall, D. G. J. Am. Chem. Soc. 2004, 126, 4518.
(b) Lou, S.; Moquist, P. N.; Schaus, S. E. J. Am. Chem. Soc. 2006, 128,
12660. (c) Elford, T. G.; Arimura, Y.; Yu, S. H.; Hall, D. G. J. Org.
Chem. 2007, 72, 1276. For theoretical study, see (d) Sakata, K.;
Fujimoto, H. J. Am. Chem. Soc. 2008, 130, 12519.
Frohlich, R.; Hoppe, D. Tetrahedron 2008, 64, 9123. (e) Goli, M.; He,
̈
A.; Falck, J. R. Org. Lett. 2011, 13, 344. (f) Li, H.; He, A.; Falck, J. R.;
Liebeskind, L. S. Org. Lett. 2011, 13, 3682. For cross-coupling of α-
(thiocarbamoyl)alkylstannanes with O-to-S rearrangement, see:
(g) Falck, J. R.; Patel, P. K.; Bandyopadhyay, A. J. Am. Chem. Soc.
2007, 129, 790. (h) Falck, J. R.; Patel, P. K.; Bandyopadhyay, A. J. Am.
Chem. Soc. 2008, 130, 2372.
(6) For stereospecific cross-coupling of deuterated, configurationally
defined primary alkyl-9-BBN derivatives, see: (a) Ridgway, B. H.;
Woerpel, K. A. J. Org. Chem. 1998, 63, 458. (b) Matos, K.; Soderquist,
J. A. J. Org. Chem. 1998, 63, 461. (c) Taylor, B. L. H.; Jarvo, E. R. J.
Org. Chem. 2011, 76, 7573. For stereospecific cross-coupling of
diastereomerically pure cyclopropylboron compounds, see
(d) Hildebrand, J. P.; Marsden, S. P. Synlett 1996, 893. (e) Wang,
X.-Z.; Deng, M.-Z. J. Chem. Soc., Perkin Trans. 1 1996, 2663.
(f) Charette, A. B.; De Freitas-Gil, R. P. Tetrahedron Lett. 1997, 38,
20741
dx.doi.org/10.1021/ja210025q | J. Am. Chem.Soc. 2011, 133, 20738−20741