A. R. Karimi, F. Bayat / Tetrahedron Letters 53 (2012) 123–126
125
Table 3
Thermal analysis data for 6–9
Pc
Temp of dec. °C Mass loss Probable Nature of fragment lost
(% found) (% calcd)
O
O
3
1
229–506
506–866
36
40.26
13.42
O
CoPc (6)
O
O
13.24
O
O
O
O
CuPc (7) 240–781
70.77
71.87
4
4
O
O
O
NiPc (8)
300–886
51
53.69
5.91
O
ZnPc (9) 200–272
5.2
8CH3
O
O
2
O
O
288–540
33.90
13.81
34.53
13.38
O
O
Figure 1. Absorption spectra of 6–9 in chloroform (c = 2 Â 10À5).
1
O
O
540–869
1
O
Table 1
Absorption data for phthalocyanine 8 in different solvents (c = 3 Â 10À5
)
Solvent
kmax (nm) (loge)
Acknowledgment
DMSO
DMF
CH3Cl
THF
673 (4.61), 622 (4.37), 282 (4.89)
670 (4.81), 606 (4.33), 281 (4.95)
669 (4.90), 604 (4.35), 287 (4.97), 241 (4.91)
668 (4.85), 603 (4.32), 294 (4.89), 251 (4.83)
669 (4.85), 603 (4.31), 285 (4.93), 237 (4.91)
We gratefully acknowledge the financial support from the Re-
search Council of Arak University.
CH2Cl2
Supplementary data
Supplementary data associated with this article can be found, in
Table 2
Absorption data for phthalocyanines 9 in different solvents (c = 3 Â 10À5
)
Solvent
kmax (nm) (log
e)
References and notes
DMSO
DMF
CH3Cl
THF
677 (4.76), 610 (4.17), 353 (4.52), 274 (4.69)
670 (4.81), 606 (4.33), 281 (4.95)
675 (4.96), 608 (4.33), 350 (4.73), 274 (4.81), 237 (4.85)
671 (4.88), 606 (4.28), 374 (4.66), 289 (4.69), 250 (4.81)
679 (4.71), 611 (4.16), 351 (4.57), 237 (4.88)
1. Torre, G.; Bottari, G.; Hahn, U.; Torres, T. Struct. Bond. 2010, 135, 1.
2. Makhseed, S.; Bumajdad, A.; Ghanem, B.; Msayib, K.; McKeown, N. B.
Tetrahedron Lett. 2004, 45, 4865.
3. Yang, F.; Forrest, S. R. J. Am. Chem. Soc. 2008, 2, 1022.
CH2Cl2
4. Fischer, M. K. R.; Lopez-Duarte, I.; Wienk, M. M.; Martinez-Diaz, M. V.; Janssen,
R. A. J.; Bauerle, P.; Torres, T. J. Am. Chem. Soc. 2009, 131, 8669.
5. Somani, P. R.; Radhakrishnan, S. Mater. Chem. Phys. 2002, 77, 117.
6. Clarke, M. J. Coord. Chem. Rev. 2002, 232, 69.
The thermal properties of all the synthesized MPcs were ana-
lyzed by thermal gravimetric analysis (TGA) in the temperature
range 30–900 °C under a nitrogen atmosphere with a heating rate
of 10 °C/min. The initial weight loss up to 200 °C was related to the
residual solvent which was typical of a TGA heating run. The ZnPc,
CoPc and CuPc complexes exhibited some degradation steps whilst
NiPc had one distinct degradation step. For all the complexes ex-
cept CuPc, the xanthene moieties were sensitive to decomposition
up to 900 °C and the aromatic rings were stable. CuPc from 240 up
to 781 °C in two steps lost 70.77% of its mass which was attributed
to the four xanthenes and four C6H4O groups. The groups which
can be attributed to weight loss are listed in Table 3. The initial
decomposition temperatures of the compounds are in the order:
Ni > Cu > Co > Zn. No obvious correlation between the transition
metal ions in the phthalocyanine rings and the initial decomposi-
tion temperature was observed.
In conclusion, the metallophthalocyanines 6–9 showed good
solubility in common organic solvents (0.01 g in 5 mL of DMSO,
DMF, CHCl3, THF and CH2Cl2). Furthermore, for the conversion of
dinitrile 5 into metallophthalocyanines microwave irradiation en-
hanced the yield and reduced the reaction times in comparison
with conventional heating. While complex 9 did not show aggrega-
tion, complex 8 showed aggregation in DMSO and minimal aggre-
gation in DMF. The Pcs reported in this work can be considered as
efficient candidates for solution studies requiring the monomeric
form of these materials as in the case of photosensitizers used in
photodynamic therapy.
7. Hu, Y. Y.; Lai, G. Q.; Shen, Y. J.; Li, Y. F. Dyes Pigments 2005, 66, 49.
8. Cai, X.; Zhang, Y.; Qi, D.; Jiang, J. J. Phys. Chem. A 2009, 113, 2500.
9. Schlettwein, D.; Wöhrle, D.; Jaeger, N. I. J. Electrochem. Soc. 1989, 136, 2882.
10. Ding, X.; Shen, S.; Zhou, Q.; Xu, H. Dyes Pigments 1999, 40, 187.
11. Basova, T.; Kol’tsov, E.; Ray, A. K.; Hassan, A. K.; Gürek, A. G.; Ahsen, V. Sens.
Actuators, B 2006, 113, 127.
12. De La Torre, G.; Vazquez, P.; Agullo-Lopez, F.; Torres, T. J. Mater. Chem. 1998, 8,
1671.
13. Leznoff, C. C.; Lever, A. B. P. In Phthalocyanines, Properties and Applications; VCH:
New York, 1996; Vol. 4,
14. Cook, M. J.; McKeown, N. B.; Simmons, J. M.; Thomson, A. J.; Daniel, M. F.;
Harrison, K. J.; Richardson, R. M.; Roser, S. J. J. Mater. Chem. 1991, 1, 121.
15. Kaliya, O. L.; Lukyanets, E. A.; Vorozhtsov, G. N. J. Porphyrins Phthalocyanines
1999, 3, 592.
16. Beck, A.; Mangold, K. M.; Hanack, M. Chem. Ber. 1991, 124, 2315.
17. (a) Ogunsipe, A.; Nyokong, T. J. Photochem. Photobiol., A: Chem. 2005, 173, 211;
(b) Sylvain, I.; Zerrouki, R.; Granet, R.; Huang, Y. M.; Lagorce, J.-F.; Guilloton,
M.; Blais, J.-C.; Krausz, P. Bioorg. Med. Chem. 2002, 10, 57.
18. Sharon, N.; Lis, H. Science 1989, 246, 227.
19. Hanack, M.; Knecht, S.; Polley, R. Chem. Ber. 1995, 128, 929.
20. Biyikliog˘lu, Z.; Kantekin, H. Polyhedron 2008, 27, 1650.
21. Biyikliog˘lu, Z.; Kantekin, H. J. Organomet. Chem. 2008, 693, 505.
22. Biyikliog˘lu, Z.; Koca, A.; Kantekin, H. Polyhedron 2009, 28, 2171.
23. Poupelin, J. P.; Saint-Rut, G.; Foussard-Blanpin, O.; Narcisse, G.; Uchida-Ernouf,
G.; Lacroix, R. Eur. J. Med. Chem. 1978, 13, 67.
24. Hideo, T. Jpn Tokkyo Koho JP 56005480, 1981; Chem. Abstr. 1981, 95, 80922b.
25. Lambert, R. W.; Martin, J. A.; Merrett, J. H.; Parkes, K. E. B.; Thomas, G. J. PCT Int.
Appl. WO 9706178, 1997; Chem. Abstr. 1997, 126, 212377y.
26. Ion, R. M. Prog. Catal. 1997, 2, 55.
27. Saint-Ruf, G.; De, A.; Hieu, H. T. Bull. Chim. Ther. 1972, 7, 83.
28. Sirkecioglu, O.; Tulinli, N.; Akar, A. J. Chem. Res. (S) 1995, 502.
29. Zhao, T. F.; Zhao, D. F.; Sun, X. S.; Cheng, L. B. Chem. Ind. Eng. 1998, 49, 515.
30. Ji, X. S.; Liu, Y.; Miao, Y.; Jin, T. Chin. J. Pharm. Sci. 1998, 7, 221.
31. Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250.
32. Kantevari, S.; Bantu, R.; Nagarapu, L. J. Mol. Catal. A: Chem. 2007, 269, 53.