7596
K. Nagy et al. / Bioorg. Med. Chem. 19 (2011) 7590–7596
4. Johnston, M. V.; Trescher, W. H.; Ishida, A.; Nakajima, W. Pediatr. Res. 2001, 49,
735.
5. Olney, J. W. Science 1969, 164, 719.
6. Choi, D. W.; Rothman, S. M. Annu. Rev. Neurosci. 1990, 13, 171.
7. Koutsilieri, E.; Riederer, P. Parkinsonism Relat. Disord. 2007, 13(Suppl 3), S329.
8. Gardoni, F.; Di Luca, M. Eur. J. Pharmacol. 2006, 545, 2.
9. Gigler, G.; Szénási, G.; Simó, A.; Lévay, G.; Hársing, L. G., Jr.; Sas, K.; Vécsei, L.;
Toldi, J. Eur. J. Pharmacol. 2007, 564, 116.
10. Robotka, H.; Sas, K.; Ágoston, M.; Rózsa, E.; Szénási, G.; Gigler, G.; Vécsei, L.;
Toldi, J. Life Sci. 2008, 82, 915.
11. Sas, K.; Robotka, H.; Rózsa, E.; Ágoston, M.; Szénási, G.; Gigler, G.; Marosi, M.;
Kis, Z.; Farkas, T.; Vécsei, L.; Toldi, J. Neurobiol. Dis. 2008, 32, 302.
12. Muir, K. W.; Lees, K. R. Stroke 1995, 26, 503.
behavior of these animals. Only the number of rearings was re-
duced somewhat after KYNA-1 and KYNA-11 administration.
There is accumulating evidence that Glu-induced excitotoxicity
is mainly mediated by NMDA receptor channels.42,43 From clinical
aspects, the massive blockade of NMDA receptors would result in
unacceptable symptoms.12 Accordingly, Gly and polyamine site
agents, NR2B subunit specific antagonists and ion channel blockers
with lower affinity may come into consideration, as they exert
acceptable side-effects.13 KYNA would theoretically be a good can-
didate, because it is a broad-spectrum endogenous antagonist on
ionotropic EAA receptors.17,18 KYNA can inhibit NMDA receptors
at the Gly-binding sites19 and it can non-competitively inhibit
13. Muir, K. W. Curr. Opin. Pharmacol. 2006, 6, 53.
14. Schwarcz, R. Curr. Opin. Pharmacol. 2004, 4, 12.
15. Vécsei, L., Ed.; Nova Biomedical Books: New York, 2005.
16. Robotka, H.; Toldi, J.; Vécsei, L. Future Med.: Future Neurol. 2008, 3, 169.
17. Perkins, M. N.; Stone, T. W. Brain Res. 1982, 247, 184.
18. Birch, P. J.; Grossman, C. J.; Hayes, A. G. Eur. J. Pharmacol. 1988, 151, 313.
19. Kessler, M.; Terramani, T.; Lynch, G.; Baudry, M. J. Neurochem. 1989, 52, 1319.
20. Hilmas, C.; Pereira, E. F.; Alkondon, M.; Rassoulpour, A.; Schwarcz, R.;
Albuquerque, E. X. J. Neurosci. 2001, 21, 7463.
21. Marchi, M.; Risso, F.; Viola, C.; Cavazzani, P.; Raiteri, M. J. Neurochem. 2002, 80,
1071.
22. Fukui, S.; Schwarcz, R.; Rapoport, S. I.; Takada, Y.; Smith, Q. R. J. Neurochem.
1991, 56, 2007.
a
7-nicotinic acetylcholine receptors.20 Blockade of these nicotinic
receptors can also mediate the inhibition of Glu release in the stri-
atum.21 In addition, in the past few years it has been proposed that
KYNA is the endogenous ligand of the G-protein coupled receptor
35 (GPR35) too, which is highly expressed in the gastrointestinal
tract, but is also present in the central nervous system.44 It has
recently been suggested that KYNA effects in the brain are medi-
ated, at least partially, by GRP35 activation and reduced Glu
release.45
23. Fülöp, F.; Szatmári, I.; Vámos, E.; Zádori, D.; Toldi, J.; Vécsei, L. Curr. Med. Chem.
2009, 16, 4828.
However, from pharmacological considerations, KYNA itself has
several disadvantages, which rule out its systemic use. Accord-
ingly, several new KYNA analogs or prodrugs have been designed.14
An important group of these compounds comprises the KYNA
amides, which are excellent candidates,23 because they are known
to be capable of the selective inhibition of the NR2B subunit con-
taining NMDA receptors.24 The most prominent of these KYNA
amides is KYNA-1, the beneficial effects of which were reported
earlier,27–30,40 and whose partial inhibitory effect on the hippocam-
pal pyramidal neurons in area CA1 was demonstrated in the pres-
ent study. Moreover, as KYNA-1 did not significantly influence the
behavioral performance in the open-field arena, KYNA-1 treatment
does not appear to have any appreciable side-effects.
24. Borza, I.; Kolok, S.; Galgóczy, K.; Gere, A.; Horváth, C.; Farkas, S.; Greiner, I.;
Domany, G. Bioorg. Med. Chem. Lett. 2007, 17, 406.
25. Németh, H.; Robotka, H.; Kis, Z.; Rózsa, E.; Janáky, T.; Somlai, C.; Marosi, M.;
Farkas, T.; Toldi, J.; Vécsei, L. Neuropharmacology 2004, 47, 916.
26. Robotka, H.; Németh, H.; Somlai, C.; Vécsei, L.; Toldi, J. Eur. J. Pharmacol. 2005,
513, 75.
27. Vámos, E.; Fejes, A.; Koch, J.; Tajti, J.; Fülöp, F.; Toldi, J.; Párdutz, A.; Vécsei, L.
Headache 2010, 50, 834.
28. Vámos, E.; Párdutz, A.; Varga, H.; Bohár, Z.; Tajti, J.; Fülöp, F.; Toldi, J.; Vécsei, L.
Neuropharmacology 2009, 57, 425.
29. Marosi, M.; Nagy, D.; Farkas, T.; Kis, Z.; Rózsa, É.; Robotka, H.; Fülöp, F.; Vécsei,
L.; Toldi, J. J. Neural. Transm. 2010, 117, 183.
}
30. Zádori, D.; Nyiri, G.; Szonyi, A.; Szatmári, I.; Fülöp, F.; Toldi, J.; Freund, T. F.;
Vécsei, L.; Klivényi, P. J. Neural. Transm. 2010. PMID: 21194001.
31. Swartz, K. J.; During, M. J.; Freese, A.; Beal, M. F. J. Neurosci. 1990, 10, 2965.
32. Stone, T. W. Expert Opin. Investig. Drugs 2001, 10, 633.
33. Stone, T. W.; Mackay, G. M.; Forrest, C. M.; Clark, C. J.; Darlington, L. G. Clin.
Chem. Lab. Med. 2003, 41, 852.
34. Németh, H.; Toldi, J.; Vécsei, L. Curr. Neurovasc. Res. 2005, 2, 249.
35. Németh, H.; Toldi, J.; Vécsei, L. J. Neural Transm. Suppl. 2006, 285.
36. Zádori, D.; Klivényi, P.; Vámos, E.; Fülöp, F.; Toldi, J.; Vécsei, L. J. Neural. Transm.
2009, 116, 1403.
In summary, we believe that KYNA-1 is an effective neuropro-
tectant and may therefore be a promising candidate for clinical
trials.
37. Kincses, Z. T.; Toldi, J.; Vécsei, L. J. Cell. Mol. Med. 2010, 14, 2045.
38. Du, F.; Schmidt, W.; Okuno, E.; Kido, R.; Kohler, C.; Schwarcz, R. J. Comp. Neurol.
1992, 321, 477.
39. Turski, W. A.; Gramsbergen, J. B.; Traitler, H.; Schwarcz, R. J. Neurochem. 1989,
52, 1629.
40. Speciale, C.; Schwarcz, R. J. Neurochem. 1990, 54, 156.
41. Knyihar-Csillik, E.; Mihály, A.; Krisztin-Peva, B.; Robotka, H.; Szatmári, I.; Fülöp,
F.; Toldi, J.; Csillik, B.; Vécsei, L. Neurosci. Res. 2008, 61, 429.
42. Heng, M. Y.; Detloff, P. J.; Wang, P. L.; Tsien, J. Z.; Albin, R. L. J. Neurosci. 2009, 29,
3200.
Acknowledgments
The present study was supported by an OTKA Grant (K 75628),
TÁMOP-4.2.1/B-09/1/KONV-2010-0005, ETT(02-64), and the Teller
Ede Foundation (NAP-BIO-06-BAYBIOSZ). T.F. and I.S. are Bolyai
Fellows of the Hungarian Academy of Sciences, K. N. is supported
by Richter Gedeon Nyrt. Talentum Foundation.
43. Wee, X. K.; Ng, K. S.; Leung, H. W.; Cheong, Y. P.; Kong, K. H.; Ng, F. M.; Soh, W.;
Lam, Y.; Low, C. M. Br. J. Pharmacol. 2010, 159, 449.
References and notes
44. Wang, J.; Simonavicius, N.; Wu, X.; Swaminath, G.; Reagan, J.; Tian, H.; Ling, L. J.
Biol. Chem. 2006, 281, 22021.
45. Cosi, C.; Mannaioni, G.; Cozzi, A.; Carlà, V.; Sili, M.; Cavone, L.; Maratea, D.;
Moroni, F. Neuropharmacology 2010. PMID:21110987.
1. Foster, A. C.; White, R. J.; Schwarcz, R. J. Neurochem. 1986, 47, 23.
2. Castillo, J.; Davalos, A.; Naveiro, J.; Noya, M. Stroke 1996, 27, 1060.
3. Zauner, A.; Bullock, R.; Kuta, A. J.; Woodward, J.; Young, H. F. Acta Neurochir.
Suppl. 1996, 67, 40.