may lead to potential OPVs with high photon conversion
efficiencies.
Word financial support under Grant no. SR/S5/NM-47/
2005 and Grant no. SR/NM/NS-49/2009 from DST, India and
World Premier International Research Center Initiative (WPI
Initiative) on Materials Nanoarchitectonics, MEXT, Japan
and Core Research for Evolutional Science and Technology
(CREST) program of Japan Science and Technology Agency
(JST), Japan are gratefully acknowledged.
Notes and references
1 (a) J. L. Segura, N. Martin and D. M. Guldi, Chem. Soc. Rev.,
2005, 34, 31–47; (b) T. S. Balaban, in Light-harvesting Nano-
structures in Encyclopedia of Nanoscience and Nanotechnology,
ed. H. S. Nalwa, American Scientific Publishers, Los Angeles,
2004, vol. 4, pp. 505–559; (c) R. Bhosale, R. S. K. Kishore,
V. Ravikumar, O. Kel, E. Vauthey, N. Sakai and S. Matile, Chem.
Sci., 2010, 1, 357–368; (d) M. D. Kelzenberg, D. B. Turner-Evans,
M. C. Putnam, S. W. Boettcher, R. M. Briggs, J. Y. Baek,
N. S. Lewis and H. A. Atwater, Energy Environ. Sci., 2011, 4,
866–871.
2 (a) Y. Yamamoto, T. Fukushima, Y. Suna, N. Ishii, A. Saeki,
S. Seki, S. Tagawa, M. Taniguchi, T. Kawai and T. Aida, Science,
2006, 314, 1761–1764; (b) E. H. A. Beckers, S. C. J. Meskers, A. P.
H. J. Schenning, Z. Chen, F. Wurthner, P. Marsal, D. Beljonne,
J. Cornil and R. A. J. Janssen, J. Am. Chem. Soc., 2006, 128,
649–657; (c) Y. Hizume, K. Tashiro, R. Charvet, Y. Yamamoto,
A. Saeki, S. Seki and T. Aida, J. Am. Chem. Soc., 2010, 132,
6628–6629.
Fig. 4 (a) Photocurrent generation from molecular wires deposited
on ITO with Al as a counter electrode illuminated with white light at
an illumination flux of 30 mW cmꢁ2 for different duration times. Inset,
a plot of conductance versus illumination time. (b) Dynamic on–off
photocurrent switching response under an irradiance power of
30 mW mmꢁ2 with a frequency of 25 mHz and a duty cycle of 50%.
with linearly increasing photocurrent upon increasing incident
light intensity while the conductance also varied linearly upon
variation of illumination flux intensity (see Fig. S6, ESIw).10
The photocurrent was found to increase gradually with the
illumination time (Fig. 4a). The conductance increased
immediately following commencement of light irradiation
and reached saturation after an extended irradiation time
(inset in Fig. 4a). Repetitive on–off device response to white
illumination flux was found to be sharp and repeatable over
successive on/off irradiation cycles (Fig. 4b). A plot of
conductance versus time response reveals a similar trend over
multiple cycles (see Fig. S7, ESIw).
Donor–acceptor molecules 1 form well-defined triangular
blocks which pack in the form of ordered molecular wire
arrays over large area under applied pressure. The separation
of donor and acceptor entities by the rigid 4,40-diphenyl-
acetylene bridge at the molecular level in 1 leads to high
concentrations of electrons and holes on either side of the
interface, which generates a large chemical potential under
illumination. The chemical potential in combination with
built-in potential and charge delocalization within the densely
packed and precisely ordered domains lead to promising
photoconductive properties. Our results illustrate an intimate
relationship between charge carrier mobility and efficient
supramolecular packing between functional entities favorable
to the delocalization of the photogenerated charges. Our
method is quite flexible since the ordered assembly can be
precisely controlled in the sub-micron range by varying the
applied surface pressure. The presented approach for the
fabrication of large area molecular heterojunction devices
3 R. Charvet, S. Acharya, J. P. Hill, M. Akada, M. Liao, S. Seki,
Y. Honsho, A. Saeki and K. Ariga, J. Am. Chem. Soc., 2009, 131,
18030–18031.
4 (a) S. Acharya, J. P. Hill and K. Ariga, Adv. Mater., 2009, 21,
2959–2981; (b) K. Ariga, J. P. Hill, M. V. Lee, A. Vinu, R. Charvet
and S. Acharya, Sci. Technol. Adv. Mater., 2008, 9, 014109.
5 J. A. DeRose and R. M. Leblanc, Surf. Sci. Rep., 1995, 22, 73–126.
6 (a) D. I. Schuster, K. Li, D. M. Guldi, A. Palkar, L. Echegoyen,
C. Stanisky, R. J. Cross, M. Niemi, N. V. Tkachenko and
H. Lemmetyinen, J. Am. Chem. Soc., 2007, 129, 15973–15982;
(b) D. Kuciauskas, S. Lin, G. R. Seely, A. L. Moore, T. A. Moore,
D. Gust, T. Drovetskaya, C. A. Reed and P. D. W. Boyd, J. Phys.
Chem., 1996, 100, 15926–15932.
7 (a) F. D’Souza, P. M. Smith, M. E. Zandler, A. L. McCarty,
M. Itou, Y. Araki and O. Ito, J. Am. Chem. Soc., 2004, 126,
7898–7907; (b) A. L. Schumacher, A. S. D. Sandanayaka, J. P. Hill,
K. Ariga, P. A. Karr, Y. Araki, O. Ito and F. D’Souza,
Chem.–Eur. J., 2007, 13, 4628–4635.
8 (a) S. Okada and H. Segawa, J. Am. Chem. Soc., 2003, 125,
2792–2796; (b) S. Acharya, A. B. Panda, N. Belman, S. Efrima
and Y. Golan, Adv. Mater., 2006, 18, 210–213; (c) S. Acharya and
S. Efrima, J. Am. Chem. Soc., 2005, 127, 3486–3490.
9 (a) F. S. Kim, G. Ren and S. A. Jenekhe, Chem. Mater., 2011, 23,
682–732; (b) G. Ren, P.-T. Wu and S. A. Jenekhe, ACS Nano,
2011, 5, 376–384.
10 (a) F. J. M. Hoeben, P. Jonkheijm, E. W. Meijer and A. P. H.
Schenning, Chem. Rev., 2005, 105, 1491–1546; (b) Y. Zhang,
P. Chen, L. Jiang, W. Hu and M. Liu, J. Am. Chem. Soc., 2009,
131, 2756–2757.
11 N. V. Tkachenko, L. Rantala, A. Y. Tauber, J. Helaja,
P. H. Hynninen and H. Lemmetyinen, J. Am. Chem. Soc., 1999,
121, 9378–9387.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 6825–6827 6827