Journal of the American Chemical Society
COMMUNICATION
’ ACKNOWLEDGMENT
This work is dedicated to the memory of I. Dale Shellhammer
(1924ꢀ2010). The authors gratefully acknowledge funds from
NSF (DMR 0548117) and KAUST as well as beamline 15ID-C
of ChemMatCARS Sector 15 at APS, ANL (DOE DE-AC02-
06CH11357, NSF CHE-0822838).
’ REFERENCES
(1) MetalꢀOrganic Frameworks: Design and Application; MacGillivray,
L. R., Ed.; Wiley-VCH: Weinheim, Germany, 2010 and references
therein.
(2) Nouar, F.; Eubank, J. F.; Bousquet, T.; Wojtas, L.; Zaworotko,
M. J.; Eddaoudi, M. J. Am. Chem. Soc. 2008, 130, 1833.
(3) O’Keeffe, M.; Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M. Acc.
Chem. Res. 2008, 41, 1782.
(4) Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.;
Eddaoudi, M.; Kim, J. Nature 2003, 423, 705.
(5) (a) Delgado-Friedrichs, O.; O’Keeffe, M.; Yaghi, O. M. Acta
Crystallogr. 2006, A62, 350. (b) Delgado-Friedrichs, O.; O’Keeffe, M.
Acta Crystallogr. 2009, A65, 360.
(6) Ockwig, N. W.; Delgado-Friedrichs, O.; O’Keeffe, M.; Yaghi,
O. M. Acc. Chem. Res. 2005, 38, 176.
(7) (a) Stein, A.; Keller, S. W.; Mallouk, T. E. Science 1993,
259, 1558. (b) Fꢀerey, G. J. Solid State Chem. 2000, 152, 37. (c) Eddaoudi,
M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O. M.
Science 2002, 295, 469. (d) Kitagawa, S.; Kitaura, R.; Noro, S.-i. Angew.
Chem., Int. Ed. 2004, 43, 2334.
(8) Tranchemontagne, D. J.; Mendoza-Cortes, J. L.; O’Keeffe, M.;
Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1257.
(9) Sudik, A. C.; Cote, A. P.; Wong-Foy, A. G.; O’Keeffe, M.; Yaghi,
O. M. Angew. Chem., Int. Ed. 2006, 45, 2528.
Figure 4. (a) CO2 sorption isotherms for 1 and 2 at 258 K and (inset)
isosteric heat of adsorption (Q st) for CO2 in 1 and 2. (b) CO2 and CH4
high-pressure sorption isotherms for 1 and 2 collected at 298 K.
(10) Baerlocher, C.; McCusker, L. B. Database of Zeolite Structures.
(11) (a) Allen, F. H. Acta Crystallogr. 2002, B58, 380. (b) Eubank,
J. F.; Wojtas, L.; Hight, M. R.; Bousquet, T.; Kravtsov, V. Ch.; Eddaoudi,
M. J. Am. Chem. Soc. [Online early access]. DOI: 10.1021/ja203898s.
Published Online: June 15, 2011.
(12) Three basic types of pillaring: (a) Axial-to-axial: Ma, B.; Mulfort,
K. L.; Hupp, J. T. Inorg. Chem. 2005, 44, 4912. (b) Ligand-to-ligand:Chen,
B.; Ockwig, N. W.; Millward, A.; Contreras, D.; Yaghi, O. M. Angew.
Chem., Int. Ed. 2005, 44, 4745. (c) Axial-to-ligand: see ref 11b.
(13) Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen, A. G.;
Williams, I. D. Science 1999, 283, 1148.
(14) (a) Liu, Y.; Kravtsov, V. Ch.; Eddaoudi, M. Angew. Chem., Int.
Ed. 2008, 47, 8446. (b) Sava, D. F.; Kravtsov, V. Ch.; Nouar, F.; Wojtas,
L.; Eubank, J. F.; Eddaoudi, M. J. Am. Chem. Soc. 2008, 130, 3768.
(c) Liu, Y.; Kravtsov, V. Ch.; Larsen, R.; Eddaoudi, M. Chem. Commun.
2006, 1488. (d) Fꢀerey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.;
Dutour, J.; Surblꢀe, S.; Margiolaki, I. Science 2005, 309, 2040.
(15) PLATON: (a) van der Sluis, P.; Spek, A. L. Acta Crystallogr.
1990, A46, 194. (b) Spek, A. L. Acta Crystallogr. 1990, A46, c34.
(16) Wong-Foy, A. G.; Matzger, A. J.; Yaghi, O. M. J. Am. Chem. Soc.
2006, 128, 3494.
(17) Liu, Y.; Eubank, J. F.; Cairns, A. J.; Eckert, J.; Kravtsov, V. Ch.;
Luebke, R.; Eddaoudi, M. Angew. Chem., Int. Ed. 2007, 46, 3278.
(18) (a) Bell, P. W.; Thote, A. J.; Park, Y.; Gupta, R. B.; Roberts, C. B.
Ind. Eng. Chem. Res. 2003, 42, 6280. (b) Torrisi, A.; Mellot-Draznieks,
C.; Bell, R. G. J. Chem. Phys. 2010, 132, No. 044705.
tbo-MOFs (i.e., quadrangular-pillared sql-MOFs) maintain ther-
mal stability up to nearly 300 °C (Figures S7 and S8) and exhibit
permanent porosities higher than those observed for the analo-
gous HKUST-1 material. The addition of pendant functional
groups, in this case carboxylic acids, enhances the affinity for
guest molecules, particularly CO2. Further sorption studies are
underway to evaluate other potential guest molecules. Future
work will include encapsulation of porphyrins and analogous
molecules as well as corresponding catalytic studies. Also, the
facile nature of MOF synthesis combined with our platform
technique will allow us to integrate a variety of metals (e.g., Mo-,
Fe-, and Cr-HKUST-1 analogues are already known,19 and
numerous metals are known to form the paddlewheel MBB11a).
In addition, this approach based on pillaring of SBLs as the main
periodic building units will permit the generation of MOFs with
larger surface areas that can be readily functionalized prior the
assembly process. Work is in progress to introduce various
additional functionalities (e.g., various amines to evaluate their
impact on CO2 uptake) for targeted applications such as gas
separation and development of thin-film-based MOFs.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental details, additional
b
(19) Mo3(BTC)2: Kramer, M.; Schwarz, U.; Kaskel, S. J. Mater.
Chem. 2006, 16, 2245. Fe3(BTC)2: Xie, L.; Liu, S.; Gao, C.; Cao, R.;
Cao, J.; Sun, C.; Su, Z. Inorg. Chem. 2007, 46, 7782. Cr3(BTC)2: Murray,
L. J.; Dinca, M.; Yano, J.; Chavan, S.; Bordiga, S.; Brown, C. M.; Long,
J. R. J. Am. Chem. Soc. 2010, 132, 7856.
results, and crystallographic data (CIF). This material is available
’ AUTHOR INFORMATION
Corresponding Author
14207
dx.doi.org/10.1021/ja205658j |J. Am. Chem. Soc. 2011, 133, 14204–14207