The Journal of Organic Chemistry
Article
N-Ethyl-N-nitrosoaniline (6). Spectral data: 1H NMR δ 1.19 (t, J
= 7.2 Hz, 3H), 4.08 (q, J = 7.2 Hz, 2H), 7.36 (dd, J = 7.2 Hz, 1.2 Hz,
1H), 7.48 (m, 2H), 7.53 (m, 2H); 13C NMR δ 11.93, 39.42, 119.78,
127.54, 129.73, 141.64. 13C NMR matches with literature report.41
REFERENCES
■
(1) Hecht, S. S. Proc. Soc. Exp. Biol. Med. 1997, 216, 181−191.
(2) Hildegard, M, S. Life Sci. 2007, 80, 2274−2280.
(3) Walters, C. L. Dev. Meat Sci. 1980, 1, 195−217.
1
N-Methyl-N-nitrosoaniline (8). Spectral data: H NMR δ 3.46
(s, 3H), 7.36 (m, 1H), 7.48 (m, 2H), 7.53 (m, 2H); 13C NMR δ 31.4,
(4) Leppanen, O.; Ronkainen, P. Chromatographia 1982, 16, 219−
̈
12
1
223.
119.2, 127.3, 129.5. H NMR matches with literature report.
1
(5) Anderson, G. A. Soaps, Deterg. Toiletries Rev. 1979, 9, 19−21.
(6) Serfontein, W. J.; Smit, J. H. Nature 1967, 214, 169−170.
(7) Ishikawa, S.; Mochizuki, M. Genes Environ. 2007, 29, 1−10.
(8) Wang, P. G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.;
Janczuk, A. J. Chem. Rev. 2002, 102, 1091−1134.
(9) Hartman, W. W.; Roll, L. J. Org. Synth. 1933, 13, 66−67.
(10) Wagner, H.; Hill, J. B. J. Med. Chem. 1974, 17, 1337−1338.
(11) Hartman, W. W.; Roll, L. J. Org. Synth. 1933, 13, 82−83.
(12) Hou, J.-Y.; Wang, Y.-L.; Wang, J.-Y. J. Chem. Res., Synop. 2003,
2003, 626−627.
(13) Montazerozohori, M.; Karami, B. Helv. Chim. Acta 2006, 89,
2922−2926.
(14) Zolfigol, M. A.; Ghaemi, E.; Madrakian, E.; Kiany-Borazjani, M.
Synth. Commun. 2000, 30, 2057−2060.
(15) Borikar, S. P.; Paul, V. Synth. Commun. 2010, 40, 654−660.
(16) Zolfigol, M. A. Synth. Commun. 1999, 29, 905−910.
(17) Verardo, G.; Giumanini, A. G.; Strazzolini, P. Tetrahedron 1990,
46, 4303−4332.
(18) Verardo, G.; Giumanini, A. G.; Strazzolini, P. Tetrahedron 1991,
47, 7845−7852.
(19) Leoppky, R. N.; Tomasik, W. J. Org. Chem. 1983, 48, 2751−
2757.
4-(N-Methyl-N-nitrosoamino)pyridine (15). Spectral data: H
NMR δ 3.40 (s, 3H), 7.54 (dd, J = 4.8 Hz, 1.6 Hz, 2H), 8.76 (dd, 4.8
Hz, 1.6 Hz, 2H); 13C NMR δ 29.0, 111.4, 151.2. HRMS calculated for
C6H7N3O, 137.05892; found, 137.06048.
N-(4-(N-Ethyl-N-nitrosoamino)phenyl)acetamide (18). Spec-
tral data: 1H NMR (DMSO-d6) δ 1.01 (t, J = 8 Hz, 3H), 2.05 (s, 3H),
4.01(q, J = 8 Hz, 2H), 7.52 (d, J = 8 Hz, 2H), 7.71 (d, J = 8 Hz, 2H),
10.11 (s); 13C NMR (DMSO-d6) δ 11.8, 24.5, 120.1, 121.1, 136.2,
139.2, 168.9. HRMS calculated for C10H14N3O2 (M + H), 208.10860;
found, 208.10733.
N-Methyl-N-nitrosobenzylamine (20) (E/Z = 62:38). Spectral
data: 1H NMR δ 2.94 (E, s, 3H), 3.68 (Z, s, 3H), 4.80 (Z, s, 3H), 5.30
(E, s, 3H), 7.13 (Z, m, 2H), 7.25−7.40 (m, 5H (E), 3H (Z)); 13C
NMR δ 30.2 (E), 38.7 (Z), 48.0 (Z), 128.2 (Z), 128.3 (E), 128.6 (Z),
128.8 (E), 129.1 (Z), 129.3 (E), 134.0 (Z), 134.7 (E). 13C NMR
matches with literature report.41
Benzaldehyde 2,4-Dinitrophenylhydrazone (22). In a round-
bottom flask, α-nitrotoluene (0.137 g, 1 mmol), IBX (0.56 g, 2 mmol),
and TBAF (2 mmol) were mixed with 20 mL of acetonitrile, and the
mixture was stirred at 70 °C. After 3 h, the mixture was cooled to
room temperature, and 30 mL of saturated sodium bicarbonate
solution was added. The crude product was extracted with 40 mL of
ether. The ether was evaporated on a rotovap at room temperature
under low vacuum to minimize the evaporation of benzaldehyde. The
crude product was then dissolved in 20 mL of ethanol. To this
solution, 2,4-dinitrophenylhydrazine (0.198 g, 1 mmol) and
concentrated HCl (2 mL) were added, and the reaction mixture was
refluxed for 3 h. The reaction was stopped and neutralized. The crude
product was obtained by evaporating solvent in vacuo. Pure
benzaldehyde 2,4-dinitrophenylhydrazone was obtained by recrystal-
(20) Nudelman, N. S.; Bonatti, A. E. Synlett 2000, 2000, 1825−1827.
(21) Olah
2374−2377.
́ ́
, G.; Noszko, L.; Kuhn, S.; Szelke, M. Chem. Ber. 1956, 89,
(22) Chang, S.-K.; Harrington, G. W.; Rothstein, M.; Shergalis, W.
A.; Swern, D.; Vohra, S. K. Cancer Res. 1979, 39, 3871−3874.
(23) Demir, A. S.; Mahasneh, A. S.; Aksoy, H.; Gercek, Z. Synth.
Commun. 1992, 22, 2607−2611.
(24) Castedo, L.; Riguera, R.; Vazquez, M. P. J. Chem. Soc., Chem.
Comm. 1983, 301−302.
(25) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523−2584.
(26) Zhdankin, V.; Stang, P. Chemistry of Hypervalent Compounds;
Akiba, K., Ed.; Wiley-VCH: New York, 1998; pp 327−358.
(27) Bhalerao, D. S.; Mahajan, U. S.; Akamanchi, K. G. Synth.
Commun. 2008, 38, 2814−2819.
(28) Challis, B. C.; Yousaf, T. I. J. Chem. Soc., Chem. Commun. 1990,
1598−1599.
(29) Bhatt, S.; Nayak, S. K. Synth. Commun. 2007, 37, 1381−1388.
(30) Gurung, R. K.; Hou, Y. Abstracts of Papers, 241st ACS National
Meeting & Exposition, Anaheim, CA, March 27−31, 2011, ORGN-
129.
1
lization from ethanol and water (0.048 g, 17%). Spectral data: H
NMR δ 7.48 (m, 3H), 7.79 (m, 2H), 78.10 (m, 1H), 8.36 (m, 1H),
8.71 (s, 1H), 8.85 (m, 1H), 11.67 (s, 1H), agreeing with literature
report.42
1
Benzyl 2-Iodobenzoate (24). Spectral data: H NMR δ 5.38 (s,
2H), 7.14 (ddd, J = 7.2 Hz, 1.6 Hz, 2H), 7.32−7.42 (m, 4H), 7.46 (m,
2H), 7.82 (m, 1H), 7.99 (m, 1H); 13C NMR δ 67.6, 94.5, 128.1, 128.7,
1
128.8, 128.9, 131.3, 132.9, 135.2, 135.7, 141.6, 166.5. H NMR and
13C NMR match with literature report.43
2,4-Dibromo-N,N-diethylaniline (30). Spectral data: 1H NMR δ
1.00 (t, J = 7.2 Hz, 6H), 3.07 (q, J = 7.2 Hz, 4H), 6.94 (d, J = 8.4 Hz,
1H), 7.35 (dd, J = 8.4 Hz, 2.4 Hz, 1H), 7.71 (d, J = 2.4 Hz, 1H); 13C
NMR δ 12.4, 47.2, 116.3, 123.3, 125.4, 130.8, 136.2, 148.6. HRMS
calculated for C10H13Br2N, 304.9415; found, 304.9398.
(31) Wulfman, D. S. Diazonium and Diazo Groups; Patai, S., Ed.;
John Wiley & Sons, Ltd.: New York, 1978; Vol. 1, pp 247−339.
(32) Barton, D. H. R.; Motherwell, W. B.; Zard, S. Z. Tetrahedron
Lett. 1983, 24, 5227−5230.
ASSOCIATED CONTENT
■
(33) Loeppky, R. N.; Elomari, S. J. Org. Chem. 1999, 65, 96−103.
(34) Teuten, E. L.; Loeppky, R. N. Org. Biomol. Chem. 2005, 3,
1097−1108.
S
* Supporting Information
1H and 13C NMR spectra for compounds 5, 15, 18, and 30.
This material is available free of charge via the Internet at
(35) Loeppky, R. N.; Singh, S. P.; Elomari, S.; Hastings, R.; Theiss, T.
E. J. Am. Chem. Soc. 1998, 120, 5193−5202.
(36) Blackmond, D. G.; Hodnett, N. S.; Lloyd-Jones, G. C. J. Am.
Chem. Soc. 2006, 128, 7450−7451.
AUTHOR INFORMATION
■
(37) Merritt, E. A.; Carneiro, V. M. T.; Silva, L. F.; Olofsson, B. J.
Org. Chem. 2010, 75, 7416−7419.
Corresponding Author
(38) Nicolai, S.; Erard, S.; Gonzalez, D. F.; Waser, J. Org. Lett. 2010,
12, 384−387.
(39) Giuffredi, G. T.; Purser, S.; Sawicki, M.; Thompson, A. L.;
Gouverneur, V. Tetrahedron: Asymmetry 2009, 20, 910−920.
(40) Hooker, J. M.; Esser-Kahn, A. P.; Francis, M. B. J. Am. Chem.
Soc. 2006, 128, 15558−15559.
(41) Tanno, M.; Sueyoshi, S. Chem. Pharm. Bull. 1987, 35, 1353−
1359.
ACKNOWLEDGMENTS
■
Financial support for this research from Meyers Institute for
Interdisciplinary Research in Organic and Medicinal Chemistry,
Southern Illinois University Carbondale is gratefully acknowl-
edged.
630
dx.doi.org/10.1021/jo202276x | J. Org. Chem. 2012, 77, 626−631