of the aldol additions of DHA to aldehydes (R)-1b, (S)-1f, (S)-1g,
(S)-1h and (S)-1k, were determined by HPLC. The corresponding
diastereomeric mixtures of unphosphorylated aldol adducts were
separated under the HPLC conditions and compared to those
obtained in a previous work (see ESI†).22
13 P. Clape´s, W.-D. Fessner, G. A. Sprenger and A. K. Samland, Curr.
Opin. Chem. Biol., 2010, 14, 154–167.
14 W.-D. Fessner and S. Jennewein, in Biocatalysis in the Pharmaceutical
Biotechnological Industries., ed. R. N. Patel and M. Dekker, New York,
2007, pp. 363–400.
15 M. Sugiyama, W. Greenberg and C.-H. Wong, J. Synth. Org. Chem.
Jpn., 2008, 66, 605–615.
16 A. K. Samland and G. A. Sprenger, Appl. Microbiol. Biotechnol., 2006,
71, 253–264.
17 W.-D. Fessner, in Asymmetric Organic Synthesis with Enzymes, ed. V.
Gotor, I. Alfonso and E. Garcia-Urdiales, Wiley-VCH Verlag GmbH
& Co. KGaA, Weinheim, 2008, pp. 275–318.
Preparative synthesis of 4-dideoxy-1,4-imino-L-arabinitol (LAB)
As a proof of synthetic utility of these methodology, the aldol
addition of DHA with aldehyde 1a in the presence of borate was
scaled up to 200 mL total volume at 12 mmol scale: 1a (2.3 g,
12 mmol) was dissolved in dimethylformamide (40 mL). To this
solution, DHA (1.4 g, 15 mmol) in water (120 mL) and 1.0 M
sodium borate, pH 7.5 (40 mL, 200 mM final concentration) was
added. RhuA (400 U, 32 mL of an ammonium sulphate suspension
of 12.5 U mL-1 were centrifuged and the pellet dissolved in 32 mL
of 200 mM sodium borate, pH 7.5). After 48 h the reaction mixture
was loaded onto a chromatography column (5 ¥ 15 cm, 295 mL)
filled with Amberlite XAD 16. First, the main impurities were
removed by washing with aq HCl 10 mM and water (4 column
volume, 1178 mL), then the product was eluted with ethanol : water
3 : 2 (2 column volume, 589 mL). Pure fractions were collected
and evaporated to dryness (2.5 g, 73% yield). Following the
procedure described above, treatment of the aldol adduct with
H2 in the presence of Pd/C, furnished the 1,4-dideoxy-1,4-imino-
L-arabinitol (LAB) (600 mg), which was not further purified (see
ESI†). Physical and spectral data matched those obtained in a
previous work.19
18 R. Wischnat, R. Martin, S. Takayama and C.-H. Wong, Bioorg. Med.
Chem. Lett., 1998, 8, 3353–3358.
19 L. Espelt, T. Parella, J. Bujons, C. Solans, J. Joglar, A. Delgado and P.
Clape´s, Chem.–Eur. J., 2003, 9, 4887–4899.
20 L. Espelt, J. Bujons, T. Parella, J. Calveras, J. Joglar, A. Delgado and P.
Clape´s, Chem.–Eur. J., 2005, 11, 1392–1401.
21 J. Calveras, M. Egido-Gaba´s, L. Go´mez, J. Casas, T. Parella, J. Joglar,
J. Bujons and P. Clape´s, Chem.–Eur. J., 2009, 15, 7310–7328.
22 X. Garrabou, L. Gomez, J. Joglar, S. Gil, T. Parella, J. Bujons and P.
Clape´s, Chem.–Eur. J., 2010, 16, 10691–10706.
23 X. Garrabou, J. Joglar, T. Parella, J. Bujons and P. Clape´s, Adv. Synth.
Catal., 2011, 353, 89–99.
24 M. Schu¨mperli, R. Pellaux and S. Panke, Appl. Microbiol. Biotechnol.,
2007, 75, 33–45.
25 M. Sugiyama, Z. Y. Hong, L. J. Whalen, W. A. Greenberg and C.-H.
Wong, Adv. Synth. Catal., 2006, 348, 2555–2559.
26 D. G. Drueckhammer, J. R. Durrwachter, R. L. Pederson, D. C. Crans,
L. Daniels and C.-H. Wong, J. Org. Chem., 1989, 54, 70–77.
27 R. Schoevaart, F. vanRantwijk and R. A. Sheldon, J. Org. Chem., 2001,
66, 4559–4562.
28 According to the work of Sugiyama et al. (see ref. 25) the model aldol
reaction reached maximum yield at about 200 mM of sodium borate.
Therefore, this concentration was used through this work.
29 J. Calveras, J. Casas, T. Parella, J. Joglar and P. Clape´s, Adv. Synth.
Catal., 2007, 349, 1661–1666.
30 The cyclic hemiaminal arises from a reversible spontaneous intramolec-
ular addition of the amino group of the carbamate to the ketose group
of the corresponding polyhydroxy N-Cbz-aminoaldol adduct.
Acknowledgements
This work was supported by the Spanish MICINN projects
CTQ2009-07359 and CTQ2009-08328, Generalitat de Catalunya
(2009 SGR 00281), and ESF project COST CM0701. X. Garrabou
acknowledges the CSIC for an I3P predoctoral scholarship.
31 X. Garrabou, J. A. Castillo, C. Gu
e´rard-He´laine, T. Parella, J. Joglar,
M. Lemaire and P. Clape´s, Angew. Chem., Int. Ed., 2009, 48, 5521–
5525.
32 Broad signals were observed when recording the spectra at 298 K
indicating the interchange between the cyclic and acyclic species..
33 R. van den Berg, J. A. Peters and H. van Bekkum, Carbohydr. Res.,
1994, 253, 1–12.
34 S. Chapelle and J.-F. Verchere, Tetrahedron, 1988, 44, 4469–4482.
35 S. Chapelle and J.-F. Verchere, Carbohydr. Res., 1989, 191, 63–70.
36 Although several a,b + a,g-bidentate B2L complexes of monosaccha-
rides have been reported to show 11B NMR signals at ~-19 ppm, these
complexes were observed only at high pH values (>9).
37 A. B. Walls, H. M. Sickmann, A. Brown, S. D. Bouman, B. Ransom,
A. Schousboe and H. S. Waagepetersen, J. Neurochem., 2008, 10, 1–9.
38 N. G. Oikonomakos, C. Tiraidis, D. D. Leonidas, S. E. Zographos, M.
Kristiansen, C. U. Jessen, L. Norskov-Lauritsen and L. Agius, J. Med.
Chem., 2006, 49, 5687–5701.
39 K. Fosgerau, N. Westergaard, B. Quistorff, N. Grunnet, M. Kristiansen
and K. Lundgren, Arch. Biochem. Biophys., 2000, 380, 274–284.
40 T. B. Mercer, S. F. Jenkinson, B. Bartholomew, R. J. Nash, S. Miyauchi,
A. Kato and G. W. J. Fleet, Tetrahedron: Asymmetry, 2009, 20, 2368–
2373.
41 Experiments conducted at 50 mM and 200 mM of triethanolamine
(TEA) or 200 mM of sodium borate at pH 7 or 7.4 at 25 ◦C gave
similar vo values: 71 and 77 mmol of aldol adduct formed h-1 mg-1,
respectively.
42 W.-D. Fessner and C. Walter, Top. Curr. Chem., 1997, 184, 97–194.
43 T. Suau, G. Alvaro, M. D. Benaiges and J. Lopez-Santin, Biotechnol.
Bioeng., 2006, 93, 48–55.
References
1 H. H. Wasserman, S. F. Martin and Y. Yamamoto, Stereoselective
Carbon–Carbon Bond Forming Reactions, Elsevier, Oxford, U.K., 1999.
2 R. Mahrwald, Modern Aldol Reactions, Vol. 1: Enolates, Organocataly-
sis, Biocatalysis and Natural Product Synthesis, Wiley-VCH, Weinheim,
2004.
3 R. Mahrwald, Modern Aldol Reactions, Vol. 2: Metal Catalysis, Wiley-
VCH, Weinheim, 2004.
4 B. Schetter and R. Mahrwald, Angew. Chem., Int. Ed., 2006, 45, 7506–
7525.
5 D. Enders, M. Voith and A. Lenzen, Angew. Chem., Int. Ed., 2005, 44,
1304–1325.
6 M. Markert and R. Mahrwald, Chem.–Eur. J., 2008, 14, 40–48.
7 B. Erni, C. Siebold, S. Christen, A. Srinivas, A. Oberholzer and U.
Baumann, Cell. Mol. Life Sci., 2006, 63, 890–900.
8 S. S. V. Ramasastry, K. Albertshofer, N. Utsumi, F. Tanaka and C. F.
Barbas III, Angew. Chem., Int. Ed., 2007, 46, 5572–5575.
9 S. S. V. Ramasastry, K. Albertshofer, N. Utsumi and C. F. Barbas, Org.
Lett., 2008, 10, 1621–1624.
10 J. A. Castillo, J. Calveras, J. Casas, M. Mitjans, M. P. Vinardell, T.
Parella, T. Inoue, G. A. Sprenger, J. Joglar and P. Clape´s, Org. Lett.,
2006, 8, 6067–6070.
11 M. Sugiyama, Z. Hong, P. H. Liang, S. M. Dean, L. J. Whalen, W.
A. Greenberg and C.-H. Wong, J. Am. Chem. Soc., 2007, 129, 14811–
14817.
12 A. L. Concia, C. Lozano, J. A. Castillo, T. Parella, J. Joglar and P.
Clape´s, Chem.–Eur. J., 2009, 15, 3808–3816.
44 S.-H. Jung, J.-H. Jeong, P. Miller and C.-H. Wong, J. Org. Chem., 1994,
59, 7182–7184.
45 L. Vidal, O. Durany, T. Suau, P. Ferrer, M. D. Benaiges and G. Caminal,
J. Chem. Technol. Biotechnol., 2003, 78, 1171–1179.
46 O. Durany, G. Caminal, C. de Mas and J. Lopez-Santin, Process
Biochem., 2004, 39, 1677–1684.
8436 | Org. Biomol. Chem., 2011, 9, 8430–8436
This journal is
The Royal Society of Chemistry 2011
©