%
P1, a = 13.666(1) A, b = 17.484(2) A, c = 22.340(2) A, a =
95.002(1)1, b = 113.180(1)1, g = 96.172(1)1, V = 4829.3(8) A3,
Z = 4, T = 180(2) K, 18 829 collected reflections, 18 829 unique
reflections (Rint = 0.0454); R1 = 0.0339, wR2 = 0.0841 for data with
I 4 2s(I), and R1 = 0.0483, wR2 = 0.0876 for all unique data.
1 (a) T. Hiyama, Organofluorine Compounds, Springer, Berlin, 2000;
(b) K. Muller, C. Faeh and F. Diederich, Science, 2007, 317, 1881;
¨
(c) K. L. Kirk, Org. Process Res. Dev., 2008, 12, 305;
(d) V. V. Grushin, Acc. Chem. Res., 2010, 43, 160; (e) T. Furuya,
C. A. Kuttruff and T. Ritter, Curr. Opin. Drug Discovery Dev.,
2008, 11, 803; (f) T. Furuya, A. S. Kamlet and T. Ritter, Nature,
2011, 473, 470; (g) A. Vigalok, Organometallics, 2011, 30, 4802.
2 J. F. Hartwig, Organometallic Metal Chemistry, University Science
Books, Sausalit, CA, 2010, ch. 19.
Scheme 2 Competitive cyclometalation and C–F coupling pathways.
To gain more insights into the Pt(IV)–F species proposed in
Schemes 1 and 2, the fluorination of 5 and 6 by XeF2 was
examined. In particular, we hoped that the ortho-pyridyl
3 For recent examples of metal-catalyzed nucleophilic fluorinations,
see: (a) D. A. Watson, M. Su, G. Teverovskiy, Y. Zhang, J. Garcıa-
´
group in
5 could trap the coordinatively unsaturated
Fortanet, T. Kinzel and S. L. Buchwald, Science, 2009, 325, 1661;
(b) M. H. Katcher and A. G. Doyle, J. Am. Chem. Soc., 2010,
132, 17402; (c) C. Hollingworth, A. Hazari, M. N. Hopkinson,
M. Tredwell, E. Benedetto, M. Huiban, A. D. Gee, J. M. Brown
and V. Gouverneur, Angew. Chem., Int. Ed., 2011, 50, 2613.
4 For recent examples of C–F couplings through Pd(IV) intermediates,
see: (a) K. L. Hull, W. Q. Anani and M. S. Sanford, J. Am. Chem.
Soc., 2006, 128, 7134; (b) T. Furuya, H. M. Kaiser and T. Ritter,
Angew. Chem., Int. Ed., 2008, 47, 5993; (c) T. Furuya and T. Ritter,
J. Am. Chem. Soc., 2008, 130, 10060; (d) N. D. Ball and
M. S. Sanford, J. Am. Chem. Soc., 2009, 131, 3796; (e) X. Wang,
T. S. Mei and J. Q. Yu, J. Am. Chem. Soc., 2009, 131, 7520;
(f) T. Wu, G. Yin and G. Liu, J. Am. Chem. Soc., 2009, 131, 16354;
(g) T. Furuya, D. Benitez, E. Tkatchouk, A. E. Strom, P. Tang,
W. A. Goddard III and T. Ritter, J. Am. Chem. Soc., 2010,
132, 3793; (h) W. Wang, J. Jasinski, G. B. Hammond and B. Xu,
Angew. Chem., Int. Ed., 2010, 49, 7247.
Pt(IV)–F intermediate. Instead, XeF2 converted 5 into the
Pt(II) complex 9 (eqn (3)), whose configuration was deduced
from 31P NMR data (e.g., dF = ꢀ37.9 ppm, JP1-F = 652 Hz;
JPt-P3 = 3745 Hz vs. JPt-P2 = 1863 Hz).12 The formation of
this complex presumably occurred via associative displacement
of one triphos phosphine arm (P1, eqn (3)) in 5 by the pyridyl
ligand, followed by oxidation of the unligated phosphine ligand.
We have previously shown that phosphine fluorination by XeF2
is rapid.8b Despite its structural analogy to 4 and 5, complex 6
failed to react with XeF2, indicating that a dicationic Pt(II)
center may be too electron deficient to generate a tricationic
Pt(IV) structure.
5 For Ag(I)-catalyzed electrophilic fluorination reactions, see:
(a) T. Furuya, A. E. Strom and T. Ritter, J. Am. Chem. Soc.,
2009, 131, 1662; (b) T. Furuya and T. Ritter, Org. Lett., 2009,
11, 2860; (c) P. Tang, T. Furuya and T. Ritter, J. Am. Chem. Soc.,
2010, 132, 12150; (d) T. Xu, X. Mu, H. Peng and G. Liu, Angew.
Chem., Int. Ed., 2011, 50, 8176.
ð3Þ
6 J. A. Akana, K. X. Bhattacharyya, P. Muller and J. P. Sadighi,
¨
J. Am. Chem. Soc., 2007, 129, 7736.
7 For a review on the use of F+ to enable coupling and activation
reactions from high-valent metal centers, see: K. M. Engle,
T.-S. Mei, X. Wang and J.-Q. Yu, Angew. Chem., Int. Ed., 2011,
50, 1478.
In summary, we report the first sp2 C–F coupling from a
Pt center. Like Pt–Csp3 bonds, steric congestion is a key factor, as
is F+ source. We have also demonstrated that ortho-metalation
may be competitive with C–F reductive elimination. The inter-
mediacy of Pt(IV)–F complexes, the product of direct F+ addition
to Pt(II), is supported by the direct spectroscopic observation of
several Pt(IV)–F species and the isolation of ortho-metalation
products.
8 (a) A. W. Kaspi, I. Goldberg and A. Vigalok, J. Am. Chem. Soc.,
2010, 132, 10626; (b) S.-B. Zhao, J. J. Becker and M. R. Gagne
´
,
Organometallics, 2011, 30, 3926.
9 (a) A. Vigalok, Chem.–Eur. J., 2008, 14, 5102; (b) A. W. Kaspi and
A. Vigalok, Top. Organomet. Chem., 2010, 31, 19.
10 For recent examples of sp3-carbon–halogen bond forming
reactions from Pt(IV) centers, see: (a) K. I. Goldberg, J. Yan and
E. L. Winter, J. Am. Chem. Soc., 1994, 116, 1573;
(b) K. I. Goldberg, J. Yan and E. M. Breitung, J. Am. Chem.
Soc., 1995, 117, 6889; (c) S.-B. Zhao, R.-Y. Wang and S. Wang,
Organometallics, 2009, 28, 2572; (d) P. F. Oblad, J. E. Bercaw,
N. Hazari and J. A. Labinger, Organometallics, 2010, 29, 789.
11 (a) R. Ettorre, Inorg. Nucl. Chem. Lett., 1969, 5, 45; (b) A. Yahav-
Levi, I. Goldberg, A. Vigalok and A. N. Vedernikov, J. Am. Chem.
Soc., 2008, 130, 724; (c) A. Yahav-Levi, I. Goldberg, A. Vigalok
and A. N. Vedernikov, Chem. Commun., 2010, 46, 3324.
We acknowledge the generous support of the NIH
(GM-60578) and Army Research Office Staff Research Program.
SZ thanks NSERC of Canada for a Postdoctoral Fellowship.
Notes and references
y X-Ray
structure
data:
complex
4
(CCDC
838071),
C47H44BCl2F4P3Pt, M = 1054.53, monoclinic, space group P21/c,
a = 11.1844(10) A, b = 15.4199(2) A, c = 24.7809(3) A, a = g =
901, b = 91.93(1)1, V = 4271.35(8) A3, Z = 4, T = 100(2) K, 36 354
12 See ESIw for details.
collected reflections, 8252 unique reflections (Rint = 0.0182); R1
=
13 Although not discussed herein, the reaction of (COD)Pt(mesityl)(I)
with triphos triggers migratory insertion of the Pt–mesityl bond
into the COD moiety; the product was crystallographically
0.0241, wR2 = 0.0604 for data with I 4 2s(I), and R1 = 0.0245,
wR2 = 0.0607 for all unique data. Complex 7 (CCDC 838072),
C49H48BF5NO2P3Pt, M = 1076.69, monoclinic, space group C2/c,
a = 31.7695(19) A, b = 10.0332(6) A, c = 33.988(3) A, a = g = 901,
b = 116.680(1)1, V = 9680.2(12) A3, Z = 8, T = 180(2) K, 18 908
characterized, see: S.-B. Zhao, R.-Y. Wang and M. R. Gagne
´
,
Acta Crystallogr., Sect. E: Struct. Rep. Online, 2011, E67, m972.
14 N. Godbert, T. Pugliese, I. Aiello, A. Bellusci, A. Crispini and
M. Ghedini, Eur. J. Inorg. Chem., 2007, 32, 5105.
collected reflections, 9401 unique reflections (Rint = 0.0255); R1
=
0.0302, wR2 = 0.0685 for data with I 4 2s(I), and R1 = 0.0374,
wR2 = 0.0707 for all unique data. Complex 8 (CCDC 838073),
C48H46.75BF9.50NO1.38P3.50Pt, M = 1154.41, triclinic, space group
15 J. H. Koh and M. R. Gagne
43, 3459.
16 Being linear, XeF2 is significantly smaller than Selectfluors
´
, Angew. Chem., Int. Ed., 2004,
.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 443–445 445