2001, 3, 2537; (d) N. Morita and N. Krause, Angew. Chem., Int.
Ed., 2006, 45, 1897; (e) Y. Deng, Y. Shi and S. Ma, Org. Lett., 2009,
11, 1205; (f) B. Alcaide, P. Almendros and R. Rodrıguez-Acebes,
Chem.–Eur. J., 2005, 11, 5708; (g) S. Ma and W. Gao, J. Org.
Chem., 2002, 67, 6104; (h) A. S. K. Hashmi, M. C. Blanco,
D. Fischer and J. W. Bats, Eur. J. Org. Chem., 2006, 1387;
(i) M. Brasholz and H.-U. Ressig, Angew. Chem., Int. Ed., 2007,
46, 1634; (j) C. J. T. Hyland and L. S. Hegedus, J. Org. Chem., 2006,
71, 8658; (k) A. Buzas, F. Istrate and F. Gagosz, Org. Lett., 2006,
8, 1957; (l) J. Chen, Q. Song, P. Li, H. Guan, X. Jin and Z. Xi, Org.
Lett., 2002, 4, 2269; (m) S. Kim and P. H. Lee, Adv. Synth. Catal.,
2008, 350, 547; (n) for a review, see: A. S. K. Hashmi, Chem. Rev.,
2007, 107, 3180; For a gold(i)-catalyzed formal [3+2] cycloaddition
to synthesize 2,5-dihydrofurans, see: (o) G. Zhang and L. Zhang,
J. Am. Chem. Soc., 2008, 130, 12598.
4 (a) R. R. Schrock, J. S. Murdzek, G. C. Bazan, J. Robbins,
M. DiMare and M. O’Regan, J. Am. Chem. Soc., 1990, 112, 3875;
(b) G. C. Fu and R. H. Grubbs, J. Am. Chem. Soc., 1992, 114, 5426;
(c) R. Castarlenas, C. Vovard, C. Fischmeister and P. H. Dixneuf,
J. Am. Chem. Soc., 2006, 128, 4079.
5 (a) R. Huisgen, Angew. Chem., Int. Ed. Engl., 1977, 16, 572; and
references cited therein; (b) C. Bernaus, J. Font and P. de March,
Tetrahedron, 1991, 47, 7713; (c) P. Clawson and D. A. Whiting,
J. Chem. Soc., Perkin Trans. 1, 1990, 1193; (d) G.-W. Wang,
H.-T. Yang, P. Wu, C. B. Miao and Y. Xu, J. Org. Chem., 2006,
71, 4346.
Scheme 1 Synthetic applications.
Synthetic applications of 2,5-dihydrofurans 3 have been show-
cased by the representative compound 3a (Scheme 1). Reduction
of 3a by Pd/C hydrogenation would afford the highly substituted
tetrahydrofuran 9 in 95% yield with a moderate diastero-
selectivity. Trisubstituted furan 10 could be obtained in high
yields by the treatment of 3a with DDQ (2,3-dichloro-5,6-
dicyanobenzoquinone) or air in the presence of Cs2CO3 in
refluxing CH3OH. Addition of 3a to a solution of 1.5 equivalents
of KOH in methanol afforded the 2,3-dihydrofuran 11 in 90%
yield. Finally, in the presence of m-CPBA, 3a could be oxidized
to 2,5-dihydrofuranone 12 in 38% yield.
6 For recent reviews, please see: (a) A. Padwa, Helv. Chim. Acta, 2005,
88, 1357; (b) G. Mehta and S. Muthusamy, Tetrahedron, 2002,
58, 9477; (c) D. M. Hodgson, F. Y. T. M. Pierard and P. A. Stupple,
Chem. Soc. Rev., 2001, 30, 50; (d) A. Padwa, J. Organomet. Chem.,
2005, 690, 5533.
In summary, we have established an efficient [3+2] cycloaddition
reaction of alkynes with an oxirane motif by Lewis acid
catalyzed selective C–C bond cleavage to build up functiona-
lized 2,5-dihydrofurans in high yields with excellent regio-
selectivities. Furthermore, the resulting 2,5-dihydrofuran can
be easily converted to synthetically useful furans, 2,3-dihydro-
furan, tetrahydrofuran, and 2,5-dihydrofuranone, in moderate
to excellent yield. Further studies including asymmetric cata-
lysis and expansion of the scope of dipolarophiles are ongoing
in our laboratory and will be reported in due course.
7 For [3+2] cycloaddition of carbonyl ylides (from diazocompounds
and carbonyl compounds) with alkynes: (a) R. Huisgen and P. de
March, J. Am. Chem. Soc., 1982, 104, 4953; (b) A. Padwa and
M. D. Weingarten, Chem. Rev., 1996, 96, 223; (c) A. Padwa and
S. F. Hornbuckle, Chem. Rev., 1991, 91, 263; (d) M. P. Doyle,
D. C. Forbes, M. N. Protopopova, S. A. Stanley, M. M. Vasbinder
and K. R. Xavier, J. Org. Chem., 1997, 62, 7210; (e) T. Graening,
V. Bette, J. Neudorfl, J. Lex and H.-G. Schmalz, Org. Lett., 2005,
7, 4317; (f) S. Torssell and P. Somfai, Adv. Synth. Catal., 2006,
348, 2421; (g) A. DeAngelis, M. Talor and J. M. Fox, J. Am. Chem.
Soc., 2009, 131, 1101; (h) S. Kitagaki, M. Anada, O. Kataoka,
K. Matsuno, C. Umeda, N. Watanabe and S.-I. Hashimoto, J. Am.
Chem. Soc., 1999, 121, 1417; (i) A. J. Skaggs, E. Y. Lin and
T. F. Jamison, Org. Lett., 2002, 4, 2277; (j) N. Shimada,
M. Anada, S. Nakamura, H. Nambu, H. Tsutsui and
S. Hashimoto, Org. Lett., 2008, 10, 3603; (k) D. M. Hodgson,
Notes and references
1 Modern Allene Chemistry, ed. N. Krause and A. S. K. Hashmi,
Wiley-VCH, Weinheim, Germany, 2004, vol. 1 and 2.
2 (a) K. Katagiri, K. Tori, Y. Kimura, T. Yoshida, T. Nagasaki and
H. Minato, J. Med. Chem., 1967, 10, 1149; (b) B. Esquivel, M. Flores,
S. Hernandez-Ortega, R. A. Toscano and T. P. Ramamoorthy, Phyto-
chemistry, 1995, 39, 139; (c) A. Evidente, A. Andolfi, M. Fiore, E. Spanu,
L. Maddau, A. Franceschini, F. Marras and A. Motta, J. Nat. Prod.,
2006, 69, 671; (d) K. Takahashi, M. Yasue and K. Ogiyama, Phyto-
chemistry, 1988, 27, 1550; (e) F. Nakagawa, T. Okazaki, A. Naito,
Y. Iijima and M. Yamazaki, J. Antibiot., 1985, 38, 823.
T. Bruckl, R. Glen, A. Labande, D. A. Selden, A. G. Dossetter and
¨
A. J. Redgrave, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 5450;
(l) D. M. Hodgson, R. Glen, G. H. Grant and A. J. Redg, J. Org.
Chem., 2003, 68, 581; (m) D. M. Hodgson, A. H. Labande, F. Y. T. M.
Pierard and M. A. E. Castro, J. Org. Chem., 2003, 68, 6153.
8 (a) T. Wang and J. Zhang, Chem.–Eur. J., 2011, 17, 86; (b) Z. Chen,
L. Wei and J. Zhang, Org. Lett., 2011, 13, 1170; (c) T. Wang,
C.-H. Wang and J. Zhang, Chem. Commun., 2011, 47, 5578.
9 (a) A. Lattanzi, Adv. Synth. Catal., 2006, 348, 339; (b) Y. Li, X. Liu,
Y. Yang and G. Zhao, J. Org. Chem., 2007, 72, 288.
3 (a) J. A. Marshall and C. A. Sehon, J. Org. Chem., 1995, 60, 5966;
(b) N. Bongers and N. Krause, Angew. Chem., Int. Ed., 2008,
47, 2178; (c) A. Hoffmann-Roder and N. Krause, Org. Lett.,
c
12872 Chem. Commun., 2011, 47, 12870–12872
This journal is The Royal Society of Chemistry 2011