Nanoporous Copper Metal Catalyst in Click Chemistry: Nanoporosity-Dependent Activity
uya, C. Kꢃbel, M. M. Biener, V. Zielasek, H.-P. Stein-
ruck, J. M. Gottfried, J. Biener, A. Hamza, M. Bꢄumer,
J. Phys. Chem. C 2009, 113, 5593–5600.
kynes and azides can be tolerated, giving the corre-
sponding triazoles in excellent yields. Further studies
on exploring new catalytic activities of CuNPore ma-
terials and extension of its utility to organic synthesis
are in progress.
[2] a) H. Yin, C. Zhou, C. Xu, P. Liu, X. Xu, Y. Ding, J.
Phys. Chem. C 2008, 112, 9673–9678; b) A. Wittstock,
V. Zielasek, J. Biener, C. M. Friend, M. Bꢄumer, Sci-
ence 2010, 327, 319–322.
[3] a) J. Zhang, P. Liu, H. Ma, Y. Ding, J. Phys. Chem. C
2007, 111, 10382–10388; b) C. Yu, F. Jia, Z. Ai, L.
Zhang, Chem. Mater. 2007, 19, 6065–6067; c) R. Zies, T.
Lei, K. Sieradzki, J. Synder, J. Erlebacher, J. Catal.
2008, 253, 132–138.
Experimental Section
Representative Fabrication Method of Nanoporous
Copper (cat-3)
[4] a) J. Biener, G. W. Nyce, A. M. Hodge, M. M. Biener,
A. V. Hamza, S. A. Maier, Adv. Mater. 2008, 20, 1211–
1217; b) K. Bonroy, J.-M. Friedt, F. Frederix, W. Lau-
reyn, S. Langerock, A. Campitelli, M. Sara, G. Borghs,
B. Goddeeris, P. Declerck, Anal. Chem. 2004, 76, 4299–
4306; c) M. Hieda, R. Garcia, M. Dixon, T. Daniel, D.
Allara, M. H. W. Chan, Appl. Phys. Lett. 2004, 84, 628–
630.
[5] a) D. Kramer, R. N. Viswanath, J. Wiessmueller, Nano
Lett. 2004, 4, 793–796; b) J. Biener, A. Wittstock, L. A.
Zepeda-Ruiz, M. M. Biener, V. Zielasek, D. Dramer,
R. N. Viswanath, J. Weissmuller, M. Baumer, A. V.
Hamza, Nat. Mater. 2009, 8, 47–51.
[6] a) N. Asao, Y. Ishikawa, N. Hatakeyama, Menggen-
bateer, Y. Yamamoto, M. Chen, W. Zhang, A. Inoue,
Angew. Chem. 2010, 122, 10291-10293; Angew. Chem.
Int. Ed. 2010, 49, 10093–10095; b) S. Tanaka, T.
Kaneko, N. Asao, Y. Yamamoto, M. Chen, W. Zhang,
A. Inoue, Chem. Commun. 2011, 47, 5985–5987.
[7] a) V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B.
Sharpless, Angew. Chem. 2002, 114, 2708–2711; Angew.
Chem. Int. Ed. 2002, 41, 2596–2599; b) C. W. Tornøe, C.
Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057–
3062; c) T. Kaneko, S. Tanaka, N. Asao, Y. Yamamoto,
M. Chen, W. Zhang, A. Inoue, Adv. Synth. Catal. 2011,
353. 2927–2932.
[8] For recent selected reviews, see: a) G. C. Tron, T. Pirali,
R. A. Billington, P. L. Canonico, G. Sorba, A. A. Gen-
azzani, Med. Res. Rev. 2008, 28, 278–308; b) M. Melda,
C. W. Tornøe, Chem. Rev. 2008, 108, 2952–3015; c) F.
Amblard, J.-H. Cho, R. F. Schinazi, Chem. Rev. 2009,
109, 4207–4220.
The rolled alloy Cu30Mn70 with 200 mm thickness and 5 mmꢂ
5 mm size was placed directly in 1M (NH4)2SO4 and 0.01M
MnSO4 electrolytes at room temperature (258C) for 6 days.
All electrolytes were prepared with deionized (DI) water
and reagent grade chemicals. After de-alloying, the sample
was removed from electrolytes and rinsed in DI water for
few minutes. The sample was then washed with acetone and
dried under vacuum. The dried CuNPore was stored in a
glove box. Using the same electrolytes, cat-1 and cat-2 were
fabricated at 08C and 108C for 6 days, respectively. Cat-4
and cat-5 were de-alloyed at 408C and 608C for 4 days.
Representative Procedure for the CuNPore (cat-3)-
Catalyzed Click Reaction
To a toluene (2M, 0.5 mL) solution of CuNPore (cat-3,
2 mol%, 1.3 mg) were added phenylacetylene 1a (1 mmol,
112 mL) and benzyl azide 2a (1 mmol, 125 mL) in a V-shaped
reactor vial. The reaction mixture was stirred at 658C for
2 h by using a bulky round-shaped magnetic stirring bar.
After consumption of 1a and 2a which were monitored by
TLC, the reaction mixture was cooled to room temperature.
The mixture was filtered and washed with dichloromethane.
The recovered CuNPore catalyst was washed with acetone
and dried under vacuum. After concentration of the filtrate,
the white solid was purified via short silica gel chromatogra-
phy by using a 3:1 mixture of hexane and ethyl acetate as
an eluent, to afford 1-benzyl-4-phenyl-1H-1,2,3-triazole 3a
as a white solid; yield:233 mg (99%).
Acknowledgements
[9] a) L. D. Pachon, J. H. van Maarseven, G. Rothenberg,
Adv. Synth. Catal. 2005, 347, 811–815; b) G. Molteni,
C. L. Bianchi, G. Marinoni, N. Santo, A. Ponti, New J.
Chem. 2006, 30, 1137–1139; c) B. H. Lipshutz, B. R.
Taft, Angew. Chem. 2006, 118, 8415–8418; Angew.
Chem. Int. Ed. 2006, 45, 8235–8238; d) S. Chassaing, M.
Kumarraja, A. Sani Souna Sido, P. Pale, J. Sommer,
Org. Lett. 2007, 9, 883–886; e) S. Chassaing, A. Sani
Souna Sido, A. Alix, M. Kumarraja, P. Pale, J. Sommer,
Chem. Eur. J. 2008, 14, 6713–6721; f) A. Alix, ; S. Chas-
saing, P. Pale, J. Sommer, Tetrahedron 2008, 64, 8922–
8929; g) T. Miao, L. Wang, Synthesis 2008, 363–368;
h) H. Sharghi, R. Khalifeh, M. Mahdi Doroodmand,
Adv. Synth. Catal. 2009, 351, 207–218; i) B. S. Lee, M.
Yi, S. Y. Chu, J. Y. Lee, H. R. Hwon, K. R. Lee, D.
Kang, W. S. Kim, H. B. Lim, J. Lee, H.-J. Youn, D. Y.
Chi, N. H. Hur, Chem. Commun. 2010, 46, 3935–3937.
This work was supported by a Scientific Research (A) from
Japan Society for Promotion of Science (JSPS) (No.
23245020). The authors thank Dr. Aiko Nakao (Cooperative
Support Team, RIKEN Advanced Science Institute) for assis-
tance with the XPS experiments.
References
[1] a) V. Zielasek, B. Jꢃrgens, C. Schulz, J. Biener, M. M.
Biener, A. V. Hamza, M. Bꢄumer, Angew. Chem. 2006,
118, 8421–8425; Angew. Chem. Int. Ed. 2006, 45, 8241–
8244; b) C. Xu, J. Su, X. Xu, P. Liu, H. Zhao, F. Tian,
Y. Ding, J. Am. Chem. Soc. 2007, 129, 42–43; c) C. Xu,
X. Xu, J. Su, Y. Ding, J. Catal. 2007, 252, 243–248;
d) A. Wittstock, B. Neumann, A. Schaefer, K. Dumb-
Adv. Synth. Catal. 2011, 353, 3095 – 3100
ꢁ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3099