Inorganic Chemistry
Article
from each ligand lowers the oxidation potential of fac-9 by 240
mV compared to that of fac-8.
profiles of fac-8 and fac-9; cyclic voltammograms of mer-8, fac-
8, and fac-9; and computational data. This material is available
DFT Calculations. To guide our synthetic targets in this
work, we conducted B3LYP/3-21G*/LANL2DZ density func-
tional theory (DFT) calculations on fac-1′, fac-2′, and the
isomeric ring systems fac-11 and fac-12 (Chart 2). To reduce
computation time, the N-methyl analogues of fac-1 and fac-2
(fac-1′ and fac-2′, respectively) were calculated. The calculations
suggested that the T1 ← S0 transition of 2′ (2.53 eV) is similar
in energy to that of 1′ (2.63 eV) and should, therefore, preserve
the green emission observed for 1,29−31 whereas for isomeric
systems 11 and 12, the comparable transitions have lower
energies (2.40 and 2.26 eV, respectively). These data and those
for mer-8′, fac-8′, and fac-9′ are listed in Table 2. It can be seen
that attachment of fluorine atoms to the phenyl rings of the
ligands increases the HOMO−LUMO gap, leading to the
observed blue-shifted emission.
The HOMO and LUMO surfaces of mer-8′ and fac-8′ are
shown in Figure 5. For both isomers, the HOMO is located on
the iridium and difluorophenyl units. The LUMO is
predominantly localized on one of the carboline ligands of
mer-8′, whereas it is distributed equally among the three
carboline ligands of fac-8′. The HOMO−LUMO surfaces for
fac-9′ (Figure S16 of the Supporting Information) are similar to
those for fac-8′. These data are consistent with the HOMO−
LUMO distributions in related Ir(C∧N)3 complexes.21,44
AUTHOR INFORMATION
■
Corresponding Author
ACKNOWLEDGMENTS
■
We thank Durham University (Y.Z. and R.M.E.) and Thorn
Lighting (Y.Z.) for funding. R.M.E. is funded by a Durham
Doctoral Fellowship.
REFERENCES
■
(1) Lowry, M. S.; Bernhard, S. Chem.Eur. J. 2006, 12, 7970−7977.
(2) Lo, K. K.-W.; Hui, W.-K.; Cheng, C.-K.; Tsang, K. H.-K.; Ng, D.
C.-M.; Zhu, N.; Cheung, K.-K. Coord. Chem. Rev. 2005, 249, 1434−
1450.
(3) Kakafi, Z. H. Organic Electroluminescence; CRC Press: New York,
2005.
(4) Mullen, K.; Scherf, U. Organic Light-Emitting Devices; Wiley-
̈
VCH: Weinheim, Germany, 2006.
(5) Li, Z.; Meng, H. Organic Light-Emitting Materials and Devices;
CRC Press: Boca Raton, FL, 2006.
(6) Yersin, H., Ed. Highly Efficient OLEDs with Phosphorescent
Materials; Wiley-VCH, Weinheim, Germany, 2008.
(7) Kamtekar, K. T.; Monkman, A. P.; Bryce, M. R. Adv. Mater. 2010,
22, 572−582.
(8) Holder, E.; Langeveld, B. M. W.; Schubert, U. S. Adv. Mater.
2005, 17, 1109−1121.
(9) Chou, P.-T.; Chi, Y. Chem.Eur. J. 2007, 13, 380−395.
(10) Wong, W.-Y.; Ho, C.-L. J. Mater. Chem. 2009, 19, 4457−4482.
(11) Karatsu, T.; Nakamura, T.; Yagai, S.; Kitamura, A.; Yamaguchi,
K.; Matsushima, Y.; Iwata, T.; Hori, Y.; Hagiwara, T. Chem. Lett. 2003,
32, 886−887.
(12) Laskar, I. R.; Hsu, S.-F.; Chen, T.-M. Polyhedron 2005, 24, 189−
200.
(13) McDonald, A. R.; Lutz, M.; von Chrzanowski, L. S.; van Klink,
G. P. M.; Spek, A. L.; van Koten, G. Inorg. Chem. 2008, 47, 6681−
6691.
(14) Tsuchiya, K.; Ito, E.; Yagai, S.; Kitamura, A.; Karatsu, T. Eur. J.
Inorg. Chem. 2009, 2104−2109.
(15) Deaton, J. C.; Young, R. H.; Lenhard, J. R.; Rajeswaran, M.;
Huo, S. Inorg. Chem. 2010, 49, 9151−9161.
(16) Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.;
Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151−154.
(17) Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.;
Forrest, S. R. Appl. Phys. Lett. 1999, 75, 4−6.
(18) Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee,
H.-E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. J.
Am. Chem. Soc. 2001, 123, 4304−4312.
CONCLUSIONS
■
New homoleptic tris-cyclometalated [Ir(C∧N)3] complexes
have been synthesized and characterized using a range of
techniques. mer-8 can be cleanly isomerized to fac-8 under
photochemical conditions. However, under thermal conditions
(heating at 290 °C in glycerol), an unusual regioselective
defluorination reaction of mer-8 occurs, yielding fac-9 in 58%
isolated yield. No decomposition was observed upon refluxing
fac-8 in glycerol at 290 °C for 48 h. The γ-carboline system of
fac-8 imparts high thermal stability to the complex, compared
to that of the pyridyl analogue fac-10, which undergoes
extensive decomposition upon being heated in glycerol at 290
°C for 2 h. The new complexes mer-8, fac-8, and fac-9 are
em
emitters of blue-green light (λmax = 477, 476, and 494 nm,
respectively), and their solution photophysical and electro-
chemical properties have been evaluated. The complexes are
phosphorescent with triplet lifetimes for fac-8 and fac-9 of ∼4.5
μs at room temperature; the solution ΦPL values were 0.31 and
0.22, respectively. There is broader significance in this work for
the design of ligands and their use in phosphorescent
complexes. (i) Fluorinated aromatic ligands are extensively
used as components of blue phosphors for OLEDs.21−27 Our
results provide new evidence that multifluorinated ligands are
not ideal because of their thermal instability in some complexes.
This should provide added impetus for the development of blue
phosphors with fewer47 or no fluorine substituents.28,48,49(ii)
The improved thermal stability imparted by the γ-carboline
moiety of fac-8, compared to pyridyl analogue fac-10, suggests
that (hetero)carbazole derivatives should be exploited further as
ligands for robust cyclometalated Ir complexes.
(19) Tsuboyama, A.; Iwawaki, H.; Furugori, M.; Mukaide, T.;
Kamatani, J.; Igawa, S.; Moriyama, T.; Miura, S.; Takiguchi, T.; Okada,
S.; Hoshino, M.; Ueno, K. J. Am. Chem. Soc. 2003, 125, 12971−12979.
(20) Zhou, G.; Ho, C.-L.; Wong, W.-Y.; Wang, Q.; Ma, D.; Wang, L.;
Lin, Z.; Marder, T. B.; Beeby, A. Adv. Funct. Mater. 2008, 18, 499−511.
(21) Tamayo, A. B.; Alleyne, B. D.; Djurovich, P. I.; Lamansky, S.;
Tsyba, I.; Ho, N. N.; Bau, R.; Thompson, M. E. J. Am. Chem. Soc.
2003, 125, 7377−7387.
(22) Coppo, P.; Plummer, E. A.; De Cola, L. Chem. Commun. 2004,
1774−1775.
ASSOCIATED CONTENT
* Supporting Information
■
(23) Dedeian, K.; Shi, J.; Shepherd, N.; Forsythe, E.; Morton, D. C.
Inorg. Chem. 2005, 44, 4445−4447.
S
Synthesis and characterization data for 3−6; X-ray crystallo-
graphic data, including files in CIF format for mer-8; copies of
NMR spectra of 7, mer-8, fac-8, and fac-9; luminescence decay
(24) Ragni, R.; Plummer, E. A.; Brunner, K.; Hofstraat, J. W.;
Babudri, F.; Farinola, G. M.; Naso, F.; De Cola, L. J. Mater. Chem.
2006, 16, 1161−1170.
296
dx.doi.org/10.1021/ic201655n | Inorg. Chem. 2012, 51, 290−297