to activated systems such as azoles or polyfluorinated
aromatics.6 Only a few examples of the direct amination of
unactivated aromatic CÀH bonds have been reported: Pd-
catalyzed oxidative amidation of oximes7a or anilides7b
with amides (via reactive nitrene intermediates) or
sulfonamides.7c,d Yu et al.8 recently communicated the Pd-
catalyzed CÀH amination of aromatic CÀH bonds using an
electron-deficient amide directing group and secondary
N-benzoyloxyamines. However, the reported Pd-catalyzed
methods involve oxidizing conditions at elevated tempera-
tures. Accounting for the need to design more benign and
generally applicable processes, it is desirable to develop
a mild CÀH amination of aromatic substrates using an
efficient and versatile directing group, which is (1) readily
accessible and (2) easily converted to different valuable
functionalities. Herein, we report on a Rh-catalyzed direct
CÀH amination of aromatic CÀH bonds9 proceeding at rt
by usage of the easily installed and versatile N-pivaloyloxy
amide directing group (DG) CONHOPiv and N-chloroalk-
ylamines as a readily accessible nitrogen source.
Table 1. Reaction Optimizationa
yield
(%)b
entry substrate amine catalyst
base
1
1a
1a
1a
1b
1b
1b
1b
1b
1b
2a [RhCp*Cl2]2 CsOAc
2a [RhCp*Cl2]2 CsOAc
2a Pd(OAc)2 CsOAc
27, 3aa
35, 3aa
<5, 3aa
80, 3ba
83, 3ba
2c
3c
4
2a [RhCp*Cl2]2 CsOAc
2a [RhCp*Cl2]2 CsOPiv
5
6d
7
2a [RhCp*Cl2]2 CsOAc, PivOH 85 (80), 3ba
5
[RhCp*Cl2]2 CsOAc
56, 3ba
(75), 4a
72, 3ba
8
9e
2a [RhCp*Cl2]2 AgOAc
2a [RhCp*Cl2]2 CsOAc
We10 and others11 have previously reported on Rh(III)-
catalyzed CÀH functionalization reactions proceeding
under mild conditions by application of benzhydroxamic
acid derived DGs.12 Encouraged by these results, we
approached the CÀH amination to build up important
a Reaction conditions: substrate 1a or 1b (0.2 mmol), N-substituted
morpholine (0.4 mmol), catalyst (5 mol %), base (0.4 mmol), dry MeOH
(1 mL), rt, 16 h. b Determined by 1H NMR of crude product using
CH2Br2 (7.04 μL) as internal standard; isolated yields in parentheses.
c 100 °C, 0.2 mmol of CsOAc. d 0.4 mmol of CsOAc, 0.1 mmol of PivOH.
e 0.6 mmol of 2a, 1 mol % [RhCp*Cl2]2, 0.6 mmol of CsOAc, 40 °C.
(7) For Pd-catalyzed intermolecular oxidative CÀH amidation, see:
(a) Thu, H.-Y.; Yu, W.-Y.; Che, C.-M. J. Am. Chem. Soc. 2006, 128,
9048. (b) Ng, K.-H.; Chan, A. S. C.; Yu, W.-Y. J. Am. Chem. Soc. 2010,
132, 12862. (c) Xiao, B.; Gong, T.-J.; Xu, J.; Liu, Z.-J.; Liu, L. J. Am.
Chem. Soc. 2011, 133, 1466. (d) Sun, K.; Li, Y.; Xiong, T.; Zhang, J.;
Zhang, Q. J. Am. Chem. Soc. 2011, 133, 1694.
(8) For Pd-catalyzed intermolecular CÀH amination with alkyla-
mines, see: Yoo, E. J.; Ma, S.; Mei, T.-S.; Chan, K. S. L.; Yu, J.-Q. J. Am.
Chem. Soc. 2011, 133, 7652.
(9) (a) For a representative account on Rh-catalyzed CÀH amination
of saturated CÀH bonds, see: Du Bois, J. Org. Process Res. Dev. 2011,
15, 758. (b) During preparation of this manuscript, a related work
has been reported: Ng, K.-H.; Zhou, Z.; Yu, W.-Y. Org. Lett. 2011,
DOI: 10.1021/ol203046n.
(10) (a) Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. J. Am.
Chem. Soc. 2011, 133, 2350. See also: (b) Willwacher, J.; Rakshit, S.;
Glorius, F. Org. Biomol. Chem. 2011, 9, 4736. (c) Patureau, F. W.;
Nimphius, C.; Glorius, F. Org. Lett. 2011, 13, 6346. (d) Patureau, F. W.;
Besset, T.; Glorius, F. Angew. Chem., Int. Ed. 2011, 50, 1064. (e)
Patureau, F. W.; Besset, T.; Kuhl, N.; Glorius, F. J. Am. Chem. Soc.
2011, 133, 2154. (f) Besset, T.; Kuhl, N.; Patureau, F. W.; Glorius, F.
Chem.;Eur. J. 2011, 17, 7167. (g) Rakshit, S.; Patureau, F. W.; Glorius,
F. J. Am. Chem. Soc. 2010, 132, 9585. (h) Patureau, F. W.; Glorius, F.
J. Am. Chem. Soc. 2010, 132, 9982.
(11) (a) Guimond, N.; Gouliaras, C.; Fagnou, K. J. Am. Chem. Soc.
2010, 132, 6908. (b) Guimond, N.; Gorelsky, S.; Fagnou, K. J. Am.
Chem. Soc. 2011, 133, 6449. For further important recent Rh(III)-
catalyzed CÀH activation/CÀC bond forming processes, see: (c) Ueura,
K.; Satoh, T.; Miura, M. Org. Lett. 2007, 9, 1407. (d) Umeda, N.;
Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2009, 74, 7094. (e) Tsai,
A. S.; Tauchert, M. E.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc.
2011, 133, 1248. (f) Li, Y.; Li, B.-J.; Wang, W.-H.; Huang, W.-P.; Zhang,
X.-S.; Chen, K.; Shi, Z.-J. Angew. Chem., Int. Ed. 2011, 50, 2115. (g)
Hyster, T. K.; Rovis, T. Chem. Sci. 2011, 1601. (h) Gong, T.-J.; Xiao, B.;
Liu, Z.-J.; Wan, J.; Xu, J.; Luo, D.-F.; Fu, Y.; Liu, L. Org. Lett. 2011, 13,
3235. (i) Mochida, S.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem.
2011, 76, 3024. (j) Park, S. H.; Kim, J. Y.; Chang, S. Org. Lett. 2011, 13,
2372.
arylamines.13 Therefore, we commenced our study by
choosing benzhydroxamic acid derivative 1a as the sub-
strate, [RhCp*Cl2]2 as the catalyst, and CsOAc as the
base in methanol at rt (Table 1). As an aminating partner
we employed N-chloromorpholine 2a, which has been re-
ported to be efficient in the amination of azoles at rt.6e,14
To our delight, we observed the aminated product 3aa in
reasonable yield (entry 1). Further optimization revealed
the O-pivaloyl group of 1b to be effective at rt: using
CsOAc as the base and pivalic acid (PivOH) in substoi-
chiometric amounts, 80% of 3ba could be isolated
(entry 6). Notably, Pd(OAc)2 did not promote this reac-
tion (entry 3) and use of N-benzoyloxy morpholine 5
which was reported to be successful in Pd-catalyzed direc-
ted CÀH amination8 gave the product in a significantly
lower yield (entry 7). When AgOAc was used instead of
CsOAc, surprisingly the diamination product 4a was
obtained in 75% isolated yield (entry 8). In accordance
with a practical point of view, the catalyst loading can also
be lowered to 1 mol % [RhCp*Cl2]2 by increasing both the
amount of chloroamine to 3 equiv and the reaction tem-
perature to 40 °C (entry 9).
With these conditions in hand, the scope of the amine
partner was explored (Scheme 1). All of the present chloro-
amines are readily accessible from the corresponding
(12) For the pioneering use of O-methyl hydroxamic acids as DG in
CÀH activation chemistry, see: Wang, D.-H.; Wasa, M.; Giri, R.; Yu,
J.-Q. J. Am. Chem. Soc. 2008, 130, 7190.
(13) (a) Lawrence, S. A. Amines: Synthesis, Properties and Applica-
tion; Cambridge University: Cambridge, U.K., 2004. (b) Amino Group
Chemistry: From Synthesis to the Life Sciences; Ricci, A., Eds.;
Wiley-VCH: Weinheim, 2007.
(14) For selected examples of N-chloroamines and N-chloroamides
as electrophilic nitrogen sources in metal-catalyzed amination reactions,
see: (a) He, C.; Chen, C.; Cheng, J.; Liu, C.; Liu, W.; Li, Q.; Lei, A.
Angew. Chem., Int. Ed. 2008, 47, 6414. (b) Barker, T. J.; Jarvo, E. R.
J. Am. Chem. Soc. 2009, 131, 15598. (c) For noncatalytic amination, see:
Hatakeyama, T.; Yoshimoto, Y.; Ghorai, S. K.; Nakamura, M. Org.
Lett. 2010, 12, 1516.
Org. Lett., Vol. 14, No. 2, 2012
657