Weinheim, 2002–2005, vol. I–V; (e) J. S. Miller and A. J. Epstein, Angew.
Chem., 1994, 106, 399.
3 (a) R. L. Carlin, Magnetochemistry, Springer, Berlin-Heidelberg, 1986;
(b) B. Deviren and M. Keskin, Phys. Lett. A, 2010, 374, 3119; (c) N.
Motokawa, S. Matsunaga, S. Takaishi, H. Miyasaka, M. Yamashita
and K. R. Dunbar, J. Am. Chem. Soc., 2010, 132, 11943.
4 (a) H.-L. Sun, Z.-M. Wang and S. Gao, Coord. Chem. Rev., 2010, 254,
1081; (b) L. Bogani, A. Vindigni, R. Sessoli and D. Gatteschi, J. Mater.
Chem., 2008, 18, 4750; (c) T. Liu, Y.-J. Zhang, S. Kanegawa and O. Sato,
J. Am. Chem. Soc., 2010, 132, 8250; (d) T. D. Harris, M. V. Bennett, R.
Cle´racand and J. R. Long, J. Am. Chem. Soc., 2010, 132, 3980; (e) C.
I. Yang, Y. J. Tsai, S. P. Hung, H. L. Tsai and M. Nakano, Chem.
Commun., 2010, 46, 5716.
5 (a) E. Pardo, C. Train, R. Lescoue¨zec, Y. Journaux, J. Pasa´n, C. Ruiz-
Pe´rez, F. S. Delgado, R. Ruiz-Garcia, F. Lloret and C. Paulsen, Chem.
Commun., 2010, 46, 2322; (b) T. C. Stamatatos, K. A. Abboud, W.
Wernsdorfer and G. Christou, Inorg. Chem., 2009, 48, 807; (c) D.
Visinescu, A. M. Madalan, M. Andruh, C. Duhayon, J. P. Sutter, L.
Ungur, W. V. Heuvel and L. F. Chibotaru, Chem.–Eur. J., 2009, 15,
11808.
6 (a) A. Saitoh, H. Miyasaka, M. Yamashita and R. Cle´rac, J. Mater.
Chem., 2007, 17, 2002; (b) A. Caneschi, D. Gatteschi, N. Lalioti, C.
Sangregorio, R. Sessoli, G. Venturi, A. Vindigni, A. Rettori, M. G. Pini
and M. A. Novak, Angew. Chem., Int. Ed., 2001, 40, 1760; (c) R. Cle´rac,
H. Miyasaka, M. Yamashita and C. Coulon, J. Am. Chem. Soc., 2002,
124, 12837 .
7 (a) Q.-X. Jia, H. Tian, J.-Y. Zhang and E.-Q. Gao, Chem.–Eur. J., 2011,
17, 1040; (b) T. Liu, Y.-J. Zhang, Z.-M. Wang and S. Gao, Inorg. Chem.,
2006, 45, 2782; (c) W.-W. Sun, C.-Y. Tian, X.-H. Jing, Y.-Q. Wang and
E.-Q. Gao, Chem. Commun., 2009, 4741; (d) Z. He, Z.-M. Wang, S.
Gao and C.-H. Yan, Inorg. Chem., 2006, 45, 6694.
8 (a) H. Miyasaka, K. Takayama, A. Saitoh, S. Furukawa, M. Yamashita
and R. Cle´rac, Chem.–Eur. J., 2010, 16, 3656; (b) C. Coulon, R. Cle´rac,
W. Wernsdorfer, T. Colin and H. Miyasaka, Phys. Rev. Lett., 2009, 102,
167204.
9 (a) X.-M. Zhang, Y.-Q. Wang, K. Wang, E.-Q. Gao and C.-M. Liu,
Chem. Commun., 2011, 47, 1815; (b) Y.-Q. Wang, W.-W. Sun, Z.-D.
Wang, Q.-X. Jia, E.-Q. Gao and Y. Song, Chem. Commun., 2011, 47,
6386.
10 (a) Y. Ma, J.-Y. Zhang, A.-L. Cheng, Q. Sun, E.-Q. Gao and C.-M.
Liu, Inorg. Chem., 2009, 48, 6142; (b) Y.-Q. Wang, Q.-X. Jia, K. Wang,
A.-L. Cheng and E.-Q. Gao, Inorg. Chem., 2010, 49, 1551; (c) Y. Ma,
Y.-Q. Wen, J.-Y. Zhang, E.-Q. Gao and C.-M. Liu, Dalton Trans., 2010,
39, 1846; (d) C.-Y. Tian, W.-W. Sun, Q.-X. Jia, H. Tian and E.-Q. Gao,
Dalton Trans., 2009, 6109.
11 (a) Y. Ma, N. A. G. Bandeira, V. Robert and E.-Q. Gao, Chem.–Eur.
J., 2011, 17, 1988; (b) Y. Ma, K. Wang, E.-Q. Gao and Y. Song, Dalton
Trans., 2010, 39, 7714; (c) Y.-Q. Wang, J.-Y. Zhang, Q.-X. Jia, E.-Q.
Gao and C.-M. Liu, Inorg. Chem., 2009, 48, 789; (d) Y. Ma, X.-B. Li,
X.-C. Yi, Q.-X. Jia, E.-Q. Gao and C.-M. Liu, Inorg. Chem., 2010, 49,
8092.
Fig. 10 (a) FC magnetization curves for 2 at different fields. (b) Isothermal
magnetization curves at 2 K for 2.
the AF phases exhibit a field-induced metamagnetic transition.
However, 1 displays SCM-based slow relaxation of magnetization,
while 2 does not. The SCM dynamics in AF ordered phases is still
a rare occurrence. The difference between the Ni(II) and Co(II)
compounds emphasizes the great importance of large magnetic
anisotropy for SCM dynamics. As is well known, the octahedral
Ni(II) system has a small magnetic anisotropy, which originates
from zero-field splitting associated with second-order spin–orbital
coupling, while Co(II) has a large magnetic anisotropy due to the
first-order spin-orbit coupling related to the unquenched orbital
momentum. Furthermore, more than one relaxation process is
operative in the Co(II) compound, which is likely to be associated
with the presence of distinct anisotropic sites.
12 (a) J.-P. Zhao, B.-W. Hu, Q. Yang, X.-F. Zhang, T.-L. Hu and X.-H.
Bu, Dalton Trans., 2010, 39, 56.
13 (a) X.-T. Wang, X.-H. Wang, Z.-M. Wang and S. Gao, Inorg. Chem.,
2009, 48, 1301; (b) A. K. Boudalis, M. Pissas, C. P. Raptopoulou, V.
Psycharis, B. Abarca and R. Ballesteros, Inorg. Chem., 2008, 47, 10674.
14 I. Wolfle, J. Lodaya, B. Sauerwein and G. B. Schuster, J. Am. Chem.
Soc., 1992, 114, 9304.
Acknowledgements
15 Theory and Application of Molecular Diamagnetism, ed. E. A.
Boudreaux and J. N. Mulay, J. Wiley and Sons, New York,
1976.
16 G. M. Sheldrick, Program for Empirical Absorption Correction of Area
Detector Data, University of Go¨ttingen, Go¨ttingen, Germany, 1996.
17 G. M. Sheldrick, SHELXTL, version 5.1., Bruker Analytical X-ray
Instruments Inc., Madison, WI, 1998.
This work is supported by NSFC (91022017) and the Fundamental
Research Funds for the Central Universities.
References
18 J. Laugier and B. Bochu, LMGP-Suite Suite of Programs
for the interpretation of X-ray Experiments, ENSP/Laboratoire
des Mate´riaux et du Ge´nie Physique, Saint Martin
1 (a) O. Kahn, Molecular Magnetism, VCH, New York. 1993; (b) J. Ribas,
A. Escuer, M. Monfort, R. Vicente, R. Cortes, L. Lezama and T. Rojo,
Coord. Chem. Rev., 1999, 193–195, 1027; (c) C. Coulon, H. Miyasaka
and R. Cle´rac, Struct. Bonding, 2006, 122, 163; (d) D. Gatteschi,
O. Kahn, J. S. Miller and F. Palacio, Magnetic Molecular Materials,
Kluwer Academic, Dordrecht, The Netherlands,1991.
d’He`res,
France.
and
http://
www.ccp14.ac.uk/tutorial/lmgp/.
19 M. C. Etter, Acc. Chem. Res., 1990, 23, 120.
20 C. Coulon, R. Cle´rac, L. Lecren, W. Wernsdorfer and H.
Miyasaka, Phys. Rev. B: Condens. Matter Mater. Phys., 2004, 69,
132408.
2 (a) J. S. Miller, Adv. Mater., 2002, 14, 1105; (b) D. Gatteschi and R.
Sessoli, Angew. Chem., Int. Ed., 2003, 42, 268; (c) J. S. Miller and A.-J.
Epstein, Angew. Chem., Int. Ed. Engl., 1994, 33, 385; (d) Magnetism:
Molecules to Materials; ed. J. S. Miller and M. Drilon, Willey-VCH,
21 E. Ising, Zeitschrift fu¨r Physik, 1925, 31, 253.
12748 | Dalton Trans., 2011, 40, 12742–12749
This journal is
The Royal Society of Chemistry 2011
©