Inorganic Chemistry
Communication
intact. It is interesting to note here that, because of very high
solvation of the mercury ion, their direct recognition in both
aqueous and nonaqueous solutions is quite difficult. For
example, in a solution of HgCl2 (at 25 °C), an equilibrium
ASSOCIATED CONTENT
* Supporting Information
Synthetic procedure and characterization data for 1−3, scanned
copies of spectral data of 2 and 3, various emission spectra and
other information mentioned in this Communication, and a
CIF file of 2·Hg(NO3)2. This material is available free of charge
■
S
2−n
between 12 mercury species was observed, namely, HgCln
with n = 0−4, HgOHCl, Hg(OH)n2−n with n = 1−3, HgOH3+,
Hg3(OH)33+, and HgO(s).15 Therefore, the solution obtained
from the fluorescence titration experiment was further analyzed
by mass spectroscopy to observe whether any mercury species
formed in an aqueous Hg2+ solution had been left out of the
estimation by selenotripod 2. It exhibited a molecular-ion peak
at m/z 933.7816 ([2 + Hg(NO3)2 + K]+). However, no peak
corresponding to any solvated mercury ion was observed in the
mass spectrum. Moreover, the fluorescence experiment carried
out with an acetonitrile solution of Hg(NO3)2 also provided a
fluorescence enhancement response identical with that
obtained with an aqueous Hg(NO3)2 solution (Figure S20,
SI). In fact, the mass experiment repeated after 7 days also
returned identical results. The structural determination of a
crystal obtained from the solution upon slow evaporation was
also attempted. The X-ray structure obtained from this crystal is
shown in Figure 4. The three selenium-donor arms of 2
AUTHOR INFORMATION
Corresponding Author
■
ACKNOWLEDGMENTS
A.K. thanks CSIR, New Delhi, India, for a research fellowship.
■
REFERENCES
■
(1) (a) Maheshwari, M.; Khan, S.; Singh, J. D. Tetrahedron Lett. 2007,
48, 4737. (b) Singh, J. D.; Maheshwari, M.; Khan, S.; Butcher, R. J.
Tetrahedron Lett. 2008, 49, 117.
(2) (a) Stadtman, T. C. Science 1974, 183, 915. (b) Rotruck, J. T.;
Pope, A. L.; Ganther, H. E.; Swanson, A. B.; Hafeman, D. G.;
Hoekstra, W. G. Science 1973, 179, 588.
(3) (a) Khan, M. A. K.; Wang, F. Environ. Toxicol. Chem. 2009, 28,
1567. (b) Yang, D. Y.; Chen, Y. W.; Gunn, J. M.; Belzile, N. Environ.
Rev. 2008, 16, 71. (c) Nakazawa, E.; Ikemoto, T.; Hokura, A.; Terada,
Y.; Kunito, T.; Tanabe, S.; Nakai, I. Metallomics 2011, 3, 719.
(d) Sørmo, E. G.; Ciesielski, T. M.; Øverjordet, I. B.; Lierhagen, S.;
Eggen, G. S.; Berg, T.; Jenssen, B. M. Environ. Sci. Technol. 2011, 45,
6561. (e) Dang, F.; Wang, W.-X. Environ. Sci. Technol. 2011, 45, 3116.
(4) Ralston, N. V. C.; Raymond, L. J. Toxicology 2010, 278, 112.
(5) Because of the belief regarding the strong thiophilic affinity of
Hg2+, fluorescent changes based on mercury-promoted desulfurization,
including hydrolysis, cyclizations, eliminations, and oxidation, have
been used in the design of chemodosimeters for Hg2+.
(6) Melnick, J. G.; Yukerwich, K.; Parkin, G. J. Am. Chem. Soc. 2010,
132, 647.
(7) (a) Batchelor, R. J.; Einstein, F. W. B.; Gay, I. D.; Gu, J.-H.; Pinto,
B. M. J. Organomet. Chem. 1991, 411, 147. (b) Mazouz, A.; Meunier,
P.; Kubicki, M. M.; Hanquet, B.; Amardeil, R.; Bornet, C.; Zahidi, A. J.
Chem. Soc., Dalton Trans. 1997, 1043.
(8) (a) Harris, H. H.; Pickering, I. J.; George, G. N. Science 2003,
301, 1203. (b) Tchounwou, P. B.; Ayensu, W. K.; Ninashvili, N.;
Sutton, D. Environ. Toxicol. 2003, 18, 149.
Figure 4. Molecular structure of the cationic portion of [2·Hg-
(NO3)]NO3 (hydrogen atoms and anionic NO3 omitted for clarity).
coordinate to the Hg2+ metal center with similar Hg−Se bond
distances (2.652−2.683 Å). These bond distances are
significantly longer than the sum of the covalent radii of
mercury and selenium (2.52 Å).16
(9) Levason, W.; Orchard, S. D.; Reid, G. Inorg. Chem. 2000, 39,
3853.
(10) Nolan, E. M.; Lippard, S. J. Chem. Rev. 2008, 108, 3443 and
references cited therein.
The high selectivity or specificity for the Hg2+ ion (in
absence of Ag+ ion), low response time at ambient temperature
(25 °C), and fluorescence “turn-on”-type behavior are
remarkable. The present selenotripod 2 fulfills the required
criteria for Hg2+-ion detection and further supersedes over most
of the fluorophore-containing Hg2+-ion probes. The present
system also holds the added advantages of being structurally
and synthetically simple and economical. Undoubtedly, 2 may
be taken as a unique system that exhibits direct fluorescence
enhancement as a function of Hg−Se bond formation in
solution, which is the first of its kind.
To summarize, we have identified and demonstrated a
structurally and synthetically simple selenotripod 2 as a
practical and economical Hg2+ fluorescent “turn-on” probe
that does not require any external fluorophore as the reporting
unit. The system has subnanomolar detection limit (0.1 nM)
with an extremely low response time (15 s) at ambient
temperature (25 °C).
(11) (a) Quang, D. T.; Kim, J. S. Chem. Rev. 2010, 110, 6280.
(b) Joseph, R.; Rao, C. P. Chem. Rev. 2011, 111, 4658.
(12) (a) Voutsadaki, S.; Tsikalas, G. K.; Klontzas, E.; Froudakis, G.
E.; Katerinopoulos, H. E. Chem. Commun. 2010, 46, 3292. (b) Lin, W.;
Cao, X.; Ding, Y.; Yuan, L.; Long, L. Chem. Commun. 2010, 46, 3529.
(c) Chen, C.; Wang, R.; Guo, L.; Fu, N.; Dong, H.; Yuan, Y. Org. Lett.
2011, 13, 1162. (d) Tian, M.; Ihmels, H. Chem. Commun. 2009, 3175.
(e) Lee, M. H.; Lee, S. W.; Kim, S. H.; Kang, C.; Kim, J. S. Org. Lett.
2009, 11, 2101. (f) Chen, L.; Yang, L.; Li, H.; Gao, Y.; Deng, D.; Wu,
Y.; Ma, L.-j. Inorg. Chem. 2011, 50, 10028.
(13) Mercury Update: Impact on Fish Advisories; EPA Fact Sheet EPA-
823-F-01-011; EPA, Office of Water: Washington, DC, 2001.
(14) Black, J. R.; Champness, N. R.; Levason, W.; Reid, G. Inorg.
Chem. 1996, 35, 4432.
(15) Klose, G.; Volke, F.; Peinel, G.; Knobloch, G. Magn. Reson.
Chem. 1993, 31, 548.
(16) Cordero, B.; Gom
Echeverría, J.; Cremades, E.; Barragan
2008, 2832.
́
ez, V.; Platero-Prats, A. E.; Reves
́
, M.;
́
, F.; Alvarez, S. Dalton Trans.
774
dx.doi.org/10.1021/ic2023902 | Inorg. Chem. 2012, 51, 772−774