Organometallics
Communication
(12; 1.37 Å)20 and are significantly shorter than B−O bonds in
NHC-BH2OTs (1.522 Å)7 and NHC-BH2ONO (1.512 Å).7
Apparently the B−O bonds in 6 have partial double-bond
character, as reflected in resonance form 6c. For comparison,
the length of the BO bond in a coordinated oxoborane (β-
diketiminate)−BO−AlCl3 is 1.304(2) Å.21
Int. Ed. 2011, 50, 2098−2101. (d) De Vries, T. S.; Prokofjevs, A.;
Harvey, J. N.; Vedejs, E. J. Am. Chem. Soc. 2009, 131, 14679−14687.
(5) Curran, D. P.; Solovyev, A.; Makhlouf Brahmi, M.; Fensterbank,
L.; Malacria, M.; Laco
10317.
̂
te, E. Angew. Chem., Int. Ed. 2011, 50, 10294−
(6) Wang, Y.; Robinson, G. H. Inorg. Chem. 2011, 50, 12326−12337.
(7) Solovyev, A.; Chu, Q.; Geib, S. J.; Fensterbank, L.; Malacria, M.;
We conclude that the borenium center in 6 is stabilized by
the π donation of hydroxy groups in a manner analogous to the
stabilization of borenium by two amine nitrogens, as in 3.
However, the diazaborole and NHC rings of 3 are orthogonal,
while the torsion angle between the O−B−O plane and the
plane of the NHC ring in 6 is about 30°. Thus, 6 benefits from
additional conjugative stabilization across the two subunits
(NHC and boron with its substituents) that is lacking in 3 and
other NHC-borenium ions.
̂
Lacote, E.; Curran, D. P. J. Am. Chem. Soc. 2010, 132, 15072−15080.
̈
(8) Matsumoto, T.; Gabbaı, F. P. Organometallics 2009, 28, 4252−
4253.
(9) McArthur, D.; Butts, C. P.; Lindsay, D. M. Chem. Commun. 2011,
47, 6650−6652.
(10) Weber, L.; Dobbert, E.; Stammler, H.-G.; Neumann, B.; Boese,
R.; Blaser, D. Chem. Ber. 1997, 130, 705−710.
̈
(11) Mansaray, H. B.; Rowe, A. D. L.; Phillips, N.; Niemeyer, J.;
Kelly, M.; Addy, D. A.; Bates, J. I.; Aldridge, S. Chem. Commun. 2011,
47, 12295−12297.
Moving farther afield, the NHC rings of NHC-borane
reactive intermediates are sometimes compared to phenyl
rings.22 Therefore, 6 can be considered as a cationic analogue of
the neutral phenylboronic acid (PhB(OH)2). Because of the
positive charge, [NHC-B(OH)2]+ must be a much stronger
Lewis and Brønsted acid than PhB(OH)2. The boron atom in 6
can further be replaced by a trivalent carbon atom; thus, 6 is a
distant cousin of [PhC(OH)2]+, which is simply protonated
benzoic acid.
In summary, acid/base reactions of NHC-BH2X (X = Cl,
OTf) provide the stable products NHC-BH(OTf)X. In the
presence of triflic acid, these products slowly convert into
[NHC-B(OH)2]+TfO−. This borenium ion 6 was isolated and
its ionic structure was established by spectroscopic and X-ray
crystallographic methods. It is the first representative of a new
class of borenium cation bearing two hydroxy groups on boron.
̈
(12) Chiu, C. W.; Gabbaı, F. P. Organometallics 2008, 27, 1657−
1659.
(13) Narula, C. K.; Noth, H. Inorg. Chem. 1985, 24, 2532−2539.
̈
(14) Noth, H.; Weber, S.; Rasthofer, B.; Narula, C.; Konstantinov, A.
̈
Pure Appl. Chem. 1983, 55, 1453−1461.
(15) Vidovic, D.; Reeske, G.; Findlater, M.; Cowley, A. H. Dalton
Trans. 2008, 2293−2297.
(16) Wang, Y.; Quillian, B.; Wei, P.; Wannere, C. S.; Xie, Y.; King, R.
B.; Schaefer, H. F.; Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem.
Soc. 2007, 129, 12412−12413.
(17) Arduengo, A. J.; Krafczyk, R.; Schmutzler, R.; Craig, H. A.;
Goerlich, J. R.; Marshall, W. J.; Unverzagt, M. Tetrahedron 1999, 55,
14523−14534.
(18) Schneider, W. F.; Narula, C. K.; Noth, H.; Bursten, B. E. Inorg.
̈
Chem. 1991, 30, 3919−3927.
(19) Dureen, M. A.; Lough, A.; Gilbert, T. M.; Stephan, D. W. Chem.
Commun. 2008, 4303−4305.
(20) Rettig, S. J.; Trotter, J. Can. J. Chem. 1977, 55, 3071−3075.
(21) Vidovic, D.; Moore, J. A.; Jones, J. N.; Cowley, A. H. J. Am.
Chem. Soc. 2005, 127, 4566−4567.
ASSOCIATED CONTENT
■
S
* Supporting Information
(22) Walton, J. C. Angew. Chem., Int. Ed. 2009, 48, 1726−1728.
Text and figures giving full experimental and compound
characterization details and CIF files giving crystallographic
data for all X-ray structures. This material is available free of
AUTHOR INFORMATION
■
Corresponding Author
ACKNOWLEDGMENTS
■
We thank the U.S. National Science Foundation and the
French Agence Nationale de la Recherche (ANR-11-BS07-008-
01, “NHCX”) for funding this work. A.S. thanks the University
of Pittsburgh for Andrew Mellon and Goldblatt Predoctoral
Fellowships.
REFERENCES
■
(1) (a) Kolle, P.; Noth, H. Chem. Rev. 1985, 85, 399−418. (b) Piers,
̈
̈
W. E.; Bourke, S. C.; Conroy, K. D. Angew. Chem., Int. Ed. 2005, 44,
5016−5036.
́
(2) Ines, B.; Patil, M.; Carreras, J.; Goddard, R.; Thiel, W.; Alcarazo,
M. Angew. Chem., Int. Ed. 2011, 50, 8400−8403.
(3) (a) Corey, E. J. Angew. Chem., Int. Ed. 2002, 41, 1650−1667.
̈
(b) Kim, Y.; Gabbaı, F. P. J. Am. Chem. Soc. 2009, 131, 3363−3369.
(4) (a) Del Grosso, A.; Pritchard, R. G.; Muryn, C. A.; Ingleson, M. J.
Organometallics 2010, 29, 241−249. (b) Del Grosso, A.; Singleton, P.
J.; Muryn, C. A.; Ingleson, M. J. Angew. Chem., Int. Ed. 2011, 50,
2102−2106. (c) Prokofjevs, A.; Kampf, J. W.; Vedejs, E. Angew. Chem.,
56
dx.doi.org/10.1021/om201260b | Organometallics 2012, 31, 54−56