H. K. Dambal, C. V. Yelamaggad / Tetrahedron Letters 53 (2012) 186–190
189
photoluminescence. The results have been accumulated in Table 1.
The absorption and luminescence spectra of solutions in CH2Cl2 of
compounds I and IIa–b were found to be nearly identical, as shown
in the top panels of Figure 3. In fact, the spectral pattern and the
absorption and emission intensity appear to be independent of
the concentration of compounds in solution within the working
concentration ranging from 5.5 Â 10À6 to 6.5 Â 10À6 mol LÀ1. As
can be seen in the top panel of Figure 3, all the three mesogens
show two absorption maxima centered around 290 nm and
sample. Specifically, such a blue-shift observed earlier in the Col
phase has been assumed to be associated with the lowering of
the magnitude of disorder along the column and a decrease in
the ability of the molecules to form self-quenching aggregates.13
Seemingly, the large Stokes shift values of these films are of the
same magnitude as in solution. These results point toward the high
charge transfer efficiency and conformation relaxation in the ex-
cited state of the molecules. On the whole, Stokes shifts of the
absorption and emission wavelengths are almost identical imply-
ing that photophysical properties of the three mesogens are the
same. It may also be pointed out here that the Col phase of the chi-
ral compounds IIa–b was found to be CD inactive implying that
molecular chirality has not facilitated molecular organization in
helical fashion in the LC (Col) phase.
In summary, the first examples of photoluminescent, room tem-
perature Col LCs derived from a combination of s-triazine and sty-
rylbenzene cores have been prepared by three fold HWS reaction of
triphosphonate with achiral/chiral aldehydes, and characterized.
The thermal width of the Col phase, which is remarkably high, de-
pends on the nature of the peripheral alkoxy tails. Whereas the
photophysical properties found to be independent of such a struc-
tural parameter as all the three mesogens behave analogously in
this respect with a large Stokes shifts both in solution and meso-
morphic states. These mesogens and /or their future variants might
thus turn out to be appropriate candidates for various technologi-
cal applications.
380 nm corresponding to the p–
p⁄ and n–p⁄ transitions originating
due to high absorption coefficients; this means that these meso-
gens readily absorb photons. By irradiating these solutions with
380 nm light, fluorescence maximum occurs at around 540 nm.
This is in agreement with the general observation that the emis-
sion occurs at a longer wavelength than the absorption. The visu-
ally perceivable green light in the emissive state has been shown
in the inset of Figure 3. In all the cases, the Stokes shift, the differ-
ence between positions of the band maxima of the absorption, and
emission spectra, were found to be nearly 160 nm (Table 1). The
absorption and emission spectra of fluid Col phase at rt have been
recorded for the mesogens held between two quartz plates. They
show two absorption bands analogous to the solution state (see
the lower left-portion of Fig. 3 and Table 1). As shown in the lower
right-portion of Figure 3, upon excitation with 380 nm light, they
exhibit an intense broad signal with photoluminescence maximum
at 508 nm; the inset of Figure 3 shows visually perceived green
light in the emissive state evidencing the preservation of optical
properties in fluid columnar assembly. It can be seen that the emis-
sion band of the fluid phase appears at a relatively lower wave-
length when compared to that of solution state. This blue-shift
can be attributed to the degree of intermolecular interactions with-
in the Col structure (local order) and the thickness (viscosity) of the
References and notes
1. Chandasekhar, S.; Sadashiva, B. K.; Suresh, K. A. Pramana 1977, 9, 471–480.
2. For recent reviews on discotic liquid crystals see: (a) Sergeyev, S.; Pisula, W.;
Geerts, Y. H. Chem. Soc. Rev. 2007, 36, 1902–1929; (b) Laschat, S.; Baro, A.;
Steinke, N.; Giesselmann, F.; Hagele, C.; Scalia, G.; Judele, R.; Kapatsina, E.;
Sauer, S.; Schreivogel, A.; Tosoni, M. Angew. Chem., Int. Ed. 2007, 46, 4832–4837;
(c) Pisula, W.; Zorn, M.; Chang, J. Y.; Mullen, K.; Zentel, R. Macromol. Rapid
Commun. 2009, 30, 1179–1202; Kumar, S. Chemistry of Discotic Liquid Crystals
From Monomers to Polymers; CRC Press: Boca Raton, FL, 2010; (d) Kaafarani, B.
R. Chem. Mater. 2011, 23, 378–396.
1.0
0.8
0.6
0.4
0.2
0.0
1.0
0.8
0.6
0.4
0.2
0.0
3. Li, Q. Self-Organized Organic Semiconductor From Materials to Device
Applications; John Wiley & Sons, 2011.
I
4. (a) Van De Craats, A. M.; Warman, J. M.; Fechtenkotter, A.; Brand, J. D.;
Harbison, M. A.; Mullen, K. Adv. Mater. 1999, 11, 1469–1472; (b) Debije, M. G.;
Piris, J.; De Haas, M. P.; Warman, J. M.; Tomovic, Z.; Simpson, C. D.; Watson, M.
D.; Muellen, K. J. Am. Chem. Soc. 2004, 126, 4641–4645; (c) An, Z.; Yu, J.; Jones, S.
C.; Barlow, S.; Yoo, S.; Domercq, B.; Prins, P.; Siebbeles, L. D. A.; Kippelen, B.;
Marder, S. R. Adv. Mater. 2005, 17, 2580–2583.
5. (a) Adam, D.; Schuhamcher, P.; Simmerer, J.; Hayssling, L.; Siemensmeyer, K.;
Etzbach, H.; Ringsdorf, H.; Haarer, D. Nature 1994, 371, 141–143; (b) Osburn, E.
J.; Schmidt, A. L.; Chau, K.; Chen, S. Y.; Smolenyak, P.; Armstrong, N. R.; O’Brian,
D. F. Adv. Mater. 1996, 8, 926–928; (c) Schmidt-Mende, L.; Fechtenkotter, A.;
Mullen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D. Science 2001, 293, 1119–
1126; (d) Kumar, S. Chem. Soc. Rev. 2006, 35, 83–109.
IIb
IIa
IIa
I
IIb
250 300 350 400 450 500 550 600 650 700
6. Christ, T.; Glusen, B.; Greiner, A.; Kettner, A.; Sander, R.; Stumpflen, V.; Tsukruk,
V.; Wendorff, J. H. Adv. Mater. 1997, 9, 48–52.
Wavelength (nm)
7. (a) Rohr, U.; Schlichting, P.; Bohm, A.; Gross, M.; Meerholz, K.; Brauchle, C.;
Mullen, K. Angew. Chem., Int. Ed. 1998, 37, 1434–1437; (b) Cormier, R. A.; Gregg,
B. A. Chem. Mater. 1998, 10, 1309–1319; (c) Struijk, C. W.; Sieval, A. B.;
Dakhorst, J. E. J.; van Dijk, M.; Kimkes, P.; Koehorst, R. B. M.; Donker, H.;
Schaafsma, T. J.; Picken, S. J.; van de Craats, A. M.; Warman, J. M.; Zuilhof, H.;
Sudholter, E. J. R. J. Am. Chem. Soc. 2000, 122, 11057–11066; (d) Sautter, A.;
Thalacker, C.; Wurthner, F. Angew. Chem., Int. Ed. 2001, 40, 4425–4428; (e)
Wurthner, F.; Thalacker, C.; Diele, S.; Tschierske, C. Chem. Eur. J. 2001, 7, 2245–
2253; (f) Benning, S.; Hassheider, T.; Keuker-Baumann, S.; Bock, H.; Della Sala,
F.; Frauenheim, T.; Kitzerow, H.-S. Liq. Cryst. 2001, 28, 1105–1113; (g) Seguy, I.;
Destruel, P.; Bock, H. Synth. Met. 2000, 111/112, 15–18; (h) Hassheider, T.;
Benning, S.; Kitzerow, H.-S.; Achard, M.-F.; Bock, H. Angew. Chem., Int. Ed. 2001,
40, 2060–2063; (i) Hayer, A.; de Halleux, V.; Kohler, A.; El-Garoughy, A.; Meijer,
E. W.; Barbera, J.; Tant, J.; Levin, J.; Lehmann, M.; Gierschner, J.; Cornil, J.;
Geerts, Y. H. J. Phys. Chem. B 2006, 110, 7653–7659.
8. (a) Goldmann, D.; Dietel, R.; Janietz, D.; Schmidt, C.; Wendorff, J. H. Liq. Cryst.
1998, 24, 407–411; (b) Lee, C.-H.; Yamamoto, T. Tetrahedron Lett. 2001, 42,
3993–3996; (c) Lee, C.-H.; Yamamoto, T. Bull. Chem. Soc. Jpn. 2002, 75, 615–618;
(d) Shu, W.; Valiyaveettil, S. Chem. Commun. 2002, 1350–1351; (e) Pieterse, K.;
Lauritsen, A.; Schenning, A. P. H. J.; Vekemans, J. A. J. M.; Meijer, E. W. Chem.-
Eur. J. 2003, 9, 5597–5604; (f) Barbera, J.; Puig, L.; Serrano, J. L.; Sierra, T. Chem.
Mater. 2004, 16, 3308–3317; (g) Lee, H.; Kim, D.; Lee, H.-K.; Qiu, W.; Oh, N.-K.;
Zin, W.-C.; Kim, K. Tetrahedron Lett. 2004, 45, 1019–1022; (h) Holst, H. C.;
1.0
1.0
0.8
0.6
0.4
0.2
0.0
0.8
0.6
0.4
0.2
0.0
IIb
IIa
I
IIa
IIb
I
250 300 350 400 450 500 550 600 650
Wavelength (nm)
Figure 3. UV–vis absorption (left regions) and emission (right portions) spectra of
compounds I and IIa–b in their solution (top panel) and mesomorphic (lower panel)
states. Insets in the top and bottom panels show the pictures of solution and Col
states respectively, as seen after the illumination of the light of 354 nm.