812
A.A. Dissanayake, A.L. Odom / Tetrahedron 68 (2012) 807e812
(CDCl3, 125 MHz): 31.0, 126.0, 126.7, 127.4, 127.9, 129.1, 130.1, 150.2.
MS(EI): m/z 159 (Mþ). Elemental Analysis: found: %C, 75.28; %H,
5.59; %N, 8.92; expected: %C, 75.45; %H, 5.70; %N, 8.80.
References and notes
€
1. (a) Grunanger, P.; Vita-Finzi, P. Isoxazoles In The Chemistry of Heterocyclic
Compounds; John Wiley: New York, NY, 1991; (b) Wakefield, B. J. Sci. Synth. 2001,
11, 229; (c) Zhou, Y.; Chen, Y.; Miao, W.; Qu, J. J. Heterocycl. Chem. 2010, 47, 1310.
2. For a recent review see Behrens, F.; Koehm, M.; Burkhardt, H. Curr. Opin.
Rheumatol. 2011, 23, 282.
3. For a recent study see Peter-Getzlaff, S.; Polsfuss, S.; Poledica, M.; Hombach, M.;
Giger, J.; Gottger, E. C.; Zbinden, R.; Bloemberg, G. V. J. Clin. Microbiol. 2011, 49,
2924.
4. Brough, Paul A.; Aherne, Wynne; Barril, Xavier; Borgognoni, Jenifer; Boxall,
Kathy; Cansfield, Julie E.; Cheung, Kwai-Ming J.; Collins, Ian; Davies, Nicholas
G. M.; Drysdale, Martin J.; Dymock, Brian; Eccles, Suzanne A.; Finch, Harry;
Fink, Alexandra; Hayes, Angela; Howes, Robert; Hubbard, Roderick E.; James,
Karen; Jordan, Allan M.; Lockie, Andrea; Martins, Vanessa; Massey, Andrew;
Matthews, Thomas P.; McDonald, Edward; Northfield, Christopher J.; Pearl,
Laurence H.; Prodromou, Chrisostomos; Ray, Stuart; Raynaud, Florence I.;
Roughley, Stephen D.; Sharp, Swee Y.; Surgenor, Allan; Walmsley, D. Lee; Webb,
Paul; Wood, Mike; Workman, Paul; Wright, Lisa J. Med. Chem. 2008, 51, 196.
5. Gonzales, B.; Gonzales, A. M.; Pulido, F. J. Synth. Commun. 1995, 25, 1005.
6. Cao, C.; Shi, Y.; Odom, A. L. J. Am. Chem. Soc. 2003, 125, 2880.
7. For a review on azadienes in synthesis see Jayakumar, S.; Ishar, M. P. S.; Ma-
hajan, M. P. Tetrahedron 2002, 58, 379.
8. Calvo, L. M.; Gonzalez-Nogal, A. M.; Gonzalez-Ortega, A.; Sanudo, M. C. Tetra-
hedron Lett. 2001, 42, 8981.
9. For reviews on the extensive work of Barluenga and co-workers on applications
of 1,3-diimines to organic synthesis see (a) Barluenga, J.; Tomas, M. Adv. Het-
erocycl. Chem. 1993, 57, 1; (b) Barluenga, J. Bull. Soc. Chim. Belg. 1988, 97, 545.
10. Majumder, S.; Odom, A. L. Tetrahedron 2010, 66, 3152.
11. Majumder, S.; Gipson, K. R.; Odom, A. L. Org. Lett. 2009, 11, 4720.
12. Majumder, S.; Gipson, K. R.; Staples, R. J.; Odom, A. L. Adv. Synth. Catal. 2009,
351, 2013.
4.2.10. 3,4-Diphenylisoxazole (Table 4, entry b). The general pro-
cedure was followed. The reaction was carried out with tert-buty-
lisonitrile (171 mL, 1.5 mmol), 3,5-dichloroaniline (162 mg, 1 mmol),
diphenylacetylene (178 mg, 1 mmol), and 1 (30.8 mg, 0.1 mmol) in
toluene (2 mL) with heating for 48 h at 100 ꢀC. The pressure tube
was cooled to room temperature. Then, the reaction tube was
charged with hydroxylamine hydrochloride (83 mg, 1.2 mmol) and
THF (2 mL) then stirred at 45 ꢀC for 16 h. Solvents were removed
under reduced pressure, and the crude product was dissolved in
CH2Cl2 (20 mL) and washed with water (50 mL). Purification was
accomplished by column chromatography on neutral alumina. The
eluent was hexanes/ethyl acetate 9:1, which afforded the desired
compound (55 mg, 25%) as a yellow solid. Mp: 90e92 ꢀC (lit.30 mp:
91 ꢀC). 1H NMR (CDCl3, 500 MHz): 7.35e7.40 (8H, m, AreH),
7.61e7.62 (1H, m, AreH), 7.62e7.64 (1H, m, AreH), 8.35 (1H, s, 5-CH
isoxazole). 13C{1H} NMR (CDCl3, 125 MHz): 116.2, 127.2, 127.6, 128.0,
128.3, 128.6, 128.7, 129.0, 130.0, 131.6, 151.9, 164.0. MS(EI): m/z 221
(Mþ). Elemental Analysis: found: %C, 81.29; %H, 5.13; %N, 6.42;
expected: %C, 81.43; %H, 5.01; %N, 6.33.
~
ꢀ
4.2.11. 3-(3-(tert-Butyldimethylsilyloxy)propyl)-4-phenylisoxazole
13. For related chemistry on isoxazole synthesis from 1,3-diimines see Barluenga,
J.; Jardon, J.; Rubio, V.; Gotor, V. J. Org. Chem. 1983, 48, 1379 The conditions in
this paper for isoxazole formation, which involve heating pyridine solutions of
hydroxylamine with 1,3-diimines followed by an H2SO4 quench, where not
successful with the somewhat different 1,3-diimines available using the
titanium-catalyzed multicomponent coupling chemistry discussed here.
14. Li, Y.; Turnas, A.; Ciszewski, J. T.; Odom, A. L. Inorg. Chem. 2002, 41, 6298.
15. Littler, B. J.; Miller, M. A.; Hung, C. H.; Wagner, R. W.; O’Shea, D. F.; Boyle, P. D.;
Lindsey, J. S. J. Org. Chem. 1999, 64, 1391.
16. Harris, S. A.; Ciszewski, J. T.; Odom, A. L. Inorg. Chem. 2001, 40, 1987.
17. Shi, Y.; Hall, C.; Ciszewski, J. T.; Cao, C.; Odom, A. L. Chem. Commun. 2003, 586.
18. Vujkovic, N.; Fillol, J. L.; Ward, B. D.; Wadepohl, H.; Mountford, P.; Gade, L. H.
Organometallics 2008, 27, 2518.
(Table 4, entry c). The general procedure was followed. The reaction
was carried out with tert-butylisonitrile (171
mL, 1.5 mmol), 3,5-
dichloroaniline (162 mg, 1 mmol), tert-butyldimethyl(5-
phenylpent-4-ynyloxy)silane (274 mg, 1 mmol), and 1 (30.8 mg,
0.1 mmol) in toluene (2 mL) with heating for 48 h at 100 ꢀC. The
pressure tube was cooled to room temperature. Then the same
pressure tube was charged with hydroxylamine hydrochloride
(83 mg, 1.2 mmol) and THF (2 mL) then stirred at 45 ꢀC for 16 h.
Solvents were removed in vacuo, and the crude product was dis-
solved in CH2Cl2 (20 mL) then washed with water (50 mL). Purifi-
cation was accomplished by column chromatography on neutral
alumina. The eluent was hexanes/ethyl acetate 19:1, which afforded
the desired compound (95 mg, 30%) as a yellow oil. 1H NMR (CDCl3,
500 MHz): 0.059 (6H, s, SieCH3), 0.85 (9H, s, SieCMe2CH3),
1.94e1.98 (2H, m, CH2CH2CH2OTBS), 2.99e3.02 (2H, m,
CH2CH2CH2OTBS), 3.64e3.66 (2H, m, CH2CH2CH2OTBS), 7.31e7.32
(1H, m, AreH), 7.32e7.42 (4H, m, AreH), 8.33 (1H, s, 5-CH isoxazole).
13C{1H} NMR (CDCl3, 125 MHz): 1.0, 22.4, 25.9, 30.6, 35.7, 61.7,127.4,
127.6,128.2,128.9,131.5,150.3,167.8. Elemental Analysis: found: %C,
67.94; %H, 8.42; %N, 4.52; expected: %C, 68.09; %H, 8.57; %N, 4.41.
19. Odom, A. L. Dalton Trans. 2005, 225.
20. For discussions of mechanism in related titanium-catalyzed multicomponent
couplings see Banerjee, S.; Odom, A. L. Organometallics 2006, 25, 3099.
21. One possible side reaction is the oligomerization of the alkyne, which has been
observed in some titanium catalysts, although not directly reported for 1 or 2.
We typically employ the milder dpma-based catalyst 2 for terminal alkynes Shi,
Y.; Ciszewski, J. T.; Odom, A. L. Organometallics 2001, 3767.
22. The product ratio may not be directly related to the ratio of [2þ2]-
cycloaddition products due to a CurtineHammett equilibrium in the system.
See (a) Baranger, A. M.; Walsh, P. J.; Bergman, R. G. J. Am. Chem. Soc. 1993, 115,
2753 However see; (b) Tillack, A.; Khedkar, V.; Jiao, H.; Beller, M. Eur. J. Org.
Chem. 2005, 5001 For discussions of CurtineHammett kinetics see; (c) Follett,
A. D.; McNeill, K. J. Am. Chem. Soc. 2005, 127, 844; (d) Seeman, J. I. Chem. Rev.
1983, 83, 83.
23. Beccalli, E. M.; Marchesini, A.; Pilati, T. Synth. Commun. 1993, 23, 685.
24. (a) Hosomi, A.; Shoji, H.; Sakurai, H. Chem. Lett. 1985, 1049 Caution, nitrile
oxides are unstable and sometimes explosive. For a review see; (b) Belen’Kii, L.
I. Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis: Novel Strategies in
Synthesis, 2nd ed.; John Wiley: 2008.
25. For an alternative synthesis involving reduction of the 5-chloroisoxazole see
Ponticelli, F.; Tedeschi, P. Synthesis 1985, 792.
Acknowledgements
The authors thank the National Science Foundation (CHE-
1012537) for financial support.
26. Gokel, G. W.; Widera, R. P.; Weber, W. P. Org. Synth. 1976, 55, 96.
27. Olofson, R. A.; Landesberg, J. M.; Berry, R. O.; Leaver, D.; Robertson, W. A. H.;
McKinnon, D. M. Tetrahedron 1966, 22, 2119.
Supplementary data
28. De Munno, A.; Bertini, V.; Lucchesini, F. J. Chem. Soc., Perkin Trans. 2 1977, 1121.
29. Bravo, P. Gazz. Chim. Ital. 1972, 102, 395.
30. Kohler, E. P.; Davis, A. R. J. Am. Chem. Soc. 1930, 52, 4520.
Supplementary data associated with this article can be found, in