ORGANIC
LETTERS
2012
Vol. 14, No. 2
429–431
Alkylative Ring Opening of
N-Methylaziridinium Ions and a Formal
Synthesis of Tyroscherin
Doo-Ha Yoon,† Philjun Kang,‡ Won Koo Lee,*,‡ Yongeun Kim,† and Hyun-Joon Ha*,†
Department of Chemistry and Protein Centre for Bio-Industry, Hankuk University of
Foreign Studies, Yongin 449-791, Korea, and Department of Chemistry, Sogang
University, Seoul 121-742, Korea
wonkoo@sogang.ac.kr; hjha@hufs.ac.kr
Received October 6, 2011
ABSTRACT
Alkylative ring-opening reactions of stable 2-substituted N-methylaziridinium ions proceeded with various alkyl- or arylmagnesium bromides in
the presence of CuI to yield synthetically valuable and optically pure alkylated acyclic amines in a completely regio- and stereoselective manner.
This was applied to a formal synthesis of the cytotoxic natural product tyroscherin.
Aziridine, a nitrogen-containing three-membered
ring, is synthetically valuable for the preparation of
various cyclic and acyclic molecules via the processes
including regioselective ring-opening and ring-exten-
sion reactions.1 Alkylative aziridine ring openings with
carbon nucleophiles may provide a very efficient route
toward nitrogen-containing acycles with an extension
of the carbon chain.2 A few cases have been reported for
activated aziridines bearing electron-withdrawing groups
(EWGs), such as carbonyl, sulfonyl, or phosphinyl, at
the ring nitrogen, with a limited range of applicable
nucleophiles without high regio- and stereoslectivity in
general.1f,2,3Further, the activated aziridines are rela-
tively unstable and difficult to prepare in optically pure
forms.2 However, aziridines with an electron-donating
substituent (EDG) like a phenylethyl group at the ring
nitrogen is very stable and readily accessed in optically
pure forms.4 Those aziridines should be activated to an
aziridinium ion intermediate, as shown in the bracket
of Scheme 1, prior to the nucleophilic ring-opening
reactions.2,5,6
† Hankuk University of Foreign Studies.
‡ Sogang University.
(1) (a) Tanner, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 599. (b)
Pearson, W. H.; Lian, B. W.; Bergmeier, S. C. In Comprehensive
Heterocyclic Chemistry II; Padwa, A., Ed.; Pergamon Press: New York,
1996; Vol. 1A, pp 1À96. (c) Osborn, H. M. I.; Sweeney, J. Tetrahedron:
Asymmetry 1997, 8, 1693. (d) McCoull, W.; Davis, F. A. Synthesis 2000,
1347. (e) Zwanenburg, B.; ten Holte, P. Top. Curr. Chem. 2001, 216, 93.
(f) Sweeney, J. B. Chem. Soc. Rev. 2002, 31, 247. (g) Singh, G. S.;
D’hooghe, M.; De Kimpe, N. Chem. Rev. 2007, 107, 2080. (h) Tsang,
D. S.; Yang, S.; Alphonse, F. A.; Yudin, A. K. Chem.;Eur. J. 2008, 14,
886.
(2) (a) Stankovic, S.; D’hooghe, M.; Catak, S.; Eum, H.; Waroquier, M.;
Van Speybroeck, V.; De Kimpe, N.; Ha, H.-J. Chem. Soc. Rev. 2011
10.1039/c1cs15140a. (b) Hu, X. E. Tetrahedron 2004, 60, 2701. (c) Lu, P.
Tetrahedron 2010, 66, 2549. (d) Ohwada, T.; Hirao, H.; Ogawa, A. J. Org.
Chem. 2004, 69, 7486.
(3) (a) Bergmeier, S. C.; Stanchina, D. M. J. Org. Chem. 1997, 62,
4449. (b) Travins, J. M.; Etzkorn, F. A. Tetrahedron Lett. 1998, 39, 9389.
(c) Hodgson, D. M.; Stefane, B.; Miles, T. J.; Witherington, J. Chem.
Commun. 2004, 2234. (d) Blyumin, E. V.; Gallon, H. J.; Yudin, A. K.
Org. Lett. 2007, 9, 4677. (e) Carballares, S.; Craig, D.; Hyland, C. J. T.;
Lu, P; Mathie, T.; White, A. J. P. Chem. Commun. 2009, 451. (f)
Michaelis, D. J.; Dineen, T. A. Tetrahedron Lett. 2009, 50, 1920. (g)
Bertolini, F.; Woodward, S.; Crotti, S.; Pineschi, M. Tetrahedron Lett.
2009, 50, 4515. (h) Ghorai, M. K.; Tiwari, D. P. J. Org. Chem. 2010, 75,
6173. (i) Xu, Y.; Lin, L.; Kanai, M.; Matsunaga, S.; Shibasaki, M. J. Am.
Chem. Soc. 2011, 133, 5791.
(4) Lee, W. K.; Ha, H.-J. Aldrichimica Acta 2003, 36, 57 and references
cited therein.
r
10.1021/ol202683k
2011 American Chemical Society
Published on Web 12/23/2011