Page 9 of 11
Journal of the American Chemical Society
(8) (a) Wang, Y.; Fang,H.; Tranca, H.; Qu, H.; Wang, X.;
BTAs, 1,3,5-benzenetricarboxamides; OPE-TAs, oligo(phe-
Markvoort, A. J.; Tian, Z.; Cao, X. Elucidation of the origin
of chiral amplification in discrete molecular polyhedral. Nat.
Comm. 2018, 9, 488-495. (b) Dressel, C.; Reppe, T.; Prehm,
M.; Brautzsch, M.; Tschierske, C. Chiral self-sorting and am-
plification in isotropic liquids of achiral molecules. Nat.
Chem. 2014, 6, 971–977.
1
2
3
4
5
6
7
8
nylene ethynylene)-tricarboxamides; SaS, sergeants-and-sol-
diers; MR, majority rules; HRP, helix reversal penalty; MMP,
mismatch penalty.
REFERENCES
(1) (a) Pasteur, L. Observations sur les forces dissymétriques. C.
R. Acad. Sci. 1874, 78, 1515–1518. (b) Ribó, J. M.; Crusats,
J.; Sagués, F.; Claret, J.; Rubires, R. Chiral sign induction by
vortices during the formation of mesophases in stirred solu-
tions. Science 2001, 292, 2063–2066. (c) Tsuda, A.; Alam,
M. D.; Harada, T.; Yamaguchi, T.; Ishii, N.; Aida, T. Spec-
troscopic visualization of vortex flows using dye-containing
nanofibers. Angew. Chem. Int. Ed. 2007, 46, 8198-8202; b)
Wolffs, M.; George, S. J.; Tomovic, Z.; Meskers, S. C. J.;
Schenning, A. P. H. J. ; Meijer, E. W. Macroscopic origin of
circular dichroism effects by alignment of self-assembled fi-
bers in solution. Angew. Chem. Int. Ed. 2007, 46, 8203-8206.
(d) Buendía, J.; Calbo, J.; Ortí, E.; Sánchez, L. Flexible chi-
rality in self-assembled N-annulated perylenedicarbox-
amides. Small 2017, 13, 1603880 (1-9).
(2) (a) Liu, Y.; Xuan, W.; Cui, Y. Engineering homochiral metal-
organic frameworks for heterogeneous asymmetric catalysis
and enantioselective separation. Adv. Mater. 2010, 22, 4112–
4135. (b) Saint-Denis, T. G.; Zhu, R.-Y.; Chen, G.; Wu, Q.-
F.; Yu, J.-Q. Enantioselective C(sp3)‒H bond activation by
chiral transition metal catalysts. Science 2018, 359, 6377-
6389.
(3) (a) Shimomura, K.; Ikai, T.; Kanoh, S.; Yashima, E.; Maeda,
K. Switchable enantioseparation based on macromolecular
memory of a helical polyacetylene in the solid state. Nat.
Chem. 2014, 6, 429–434. (b) Maeda, K.; Hirose, D.; Okoshi,
N.; Shimomura, K.; Wada, Y.; Ikai, T.; Kanoh, S.; Yashima,
E. Direct detection of hardly detectable hidden chirality of
hydrocarbons and deuterated isotopomers by a helical polya-
cetylene through chiral amplification and memory. J. Am.
Chem. Soc. 2018, 140, 3270–3276.
(4) (a) Koumura, N.; Zijlstra, R. W.; van Delden, R. A.; Harada,
N.; Feringa, B. L. Light-driven monodirectional molecular
rotor. Nature 1999, 401, 152–155. (b) Chen, J.; King-Chi
Leung, F.; Stuart, M. C. A.; Kajitani, T.; Fukushima, T.; van
der Giessen, E.; Feringa, B. L. Artificial muscle-like function
from hierarchical supramolecular assembly of photorespon-
sive molecular motors. Nat. Chem. 2018, 10, 132-138.
(5) (a) Doyle, A. G.; Jacobsen, E. N. Small-molecule H-bond do-
nors in asymmetric catalysis. Chem. Rev. 2007, 107, 5713–
5743. (b) Huo, H.; Shen, X.; Wang, C.; Zhang, L.; Röse, P.;
Chen, L.-A.; Harms, K.; Marsch, M.; Hilt, G.; Meggers E.
Asymmetric photoredox transition-metal catalysis activated
by visible light. Nature 2014, 515, 100–103.
(9) De Greef, T. F. A.; Smulders, M. M. J.; Wolffs, M.; Schen-
ning, A. P. H. J.; Sijbesma, R. P.; Meijer, E. W. Supramolec-
ular polymerization. Chem. Rev. 2009, 109, 5687−5754.
(10) (a) Lohr, A.; Würthner, F. Evolution of homochiral helical
dye assemblies: involvement of autocatalysis in the “majo-
rity-rules” effect. Angew. Chem. Int. Ed. 2008, 47,
1232−1236. (b) Lohr, A.; Würthner, F. Time-dependent am-
plification of helical bias in self-assembled dye nanorods di-
rected by the sergeants-and-soldiers principle. Chem. Com-
mun. 2008, 2227-2229.
(11) (a) Ghosh, G.; Paul, M.; Sakurai, T.; Matsuda, W.; Seki, S.;
Ghosh, S. Supramolecular chirality issues in unorthodox
naphthalene diimide gelators. Chem. Eur. J. 2018, 24, 1938–
1946. (b) Ghosh, S.; Li, X.-Q.; Stepanenko, V.; Würthner, F.
Dr.Control of H- and J-Type π Stacking by Peripheral Alkyl
Chains and Self-Sorting Phenomena in Perylene Bisimide
Homo- and Heteroaggregates. Chem. Eur. J. 2008, 14,
11343-11357.
(12) (a) Kaiser, T. E.; Stepanenko, V.; Würthner, F. Fluorescent
J-aggregates of core-substituted perylene bisimides: studies
on structure−property relationship, nucleation−elongation
mechanism, and sergeants-and-soldiers principle. J. Am.
Chem. Soc. 2009, 131, 6719–6732. (b) Seki, T.; Asano, A.;
Seki, S.; Kikkawa, Y.; Murayama, H.; Karatsu, T.; Kitamura,
A.; Yagai, S. Rational construction of perylene bisimide co-
lumnar superstructures with a biased helical sense. Chem.
Eur. J. 2011, 17, 3598–3608.
(13) (a) Ajayaghosh, A.; Varghese, R.; George, S. J.; Vijaya-
kumar, C. Transcription and amplification of molecular chi-
rality to oppositely biased supramolecular p-helices. Angew.
Chem. Int. Ed. 2006, 45, 1141–1144. (b) Ajayaghosh, A.;
Varghese, R.; Mahesh, S; Praveen, V. K. From vesicles to
helical nanotubes: a sergeant-and-soldiers effect in the self-
assembly of oligo(p-phenyleneethynylene)s. Angew. Chem.
Int. Ed. 2006, 45, 7729–7732. (c) Kulkarni, C.; Munira-
thinam, R.; George, S. J. Self-assembly of coronene bisimi-
des: mechanistic insight and chiral amplification. Chem. Eur.
J. 2013, 19, 11270–11278. (d) Haedler, A. T.; Meskers, S. C.
J.; Zha, R. H.; Kivala, M.; Schmidt, H.-W.; Meijer, E. W.
Pathway complexity in the enantioselective self-assembly of
functional carbonyl-bridged triarylamine trisamides. J. Am.
Chem. Soc. 2016, 138, 10539−10545.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(14) (a) Smulders, M. M. J.; Schenning, A. P. H. J.; Meijer, E. W.
Insight into the Mechanisms of Cooperative Self-Assembly:
The “Sergeants-and-Soldiers” Principle of Chiral and Achiral
C3-Symmetrical Discotic Triamides J. Am. Chem. Soc. 2008,
130, 606-611. (b) Kim, T.; Mori, T.; Aida, T.; Miyajima, D.
Dynamic propeller conformation for the unprecedentedly
high degree of chiral amplification of supramolecular helices.
Chem. Sci. 2017, 7, 6689–6694.
(6) Palmans, A. R. A.; Meijer, E. W. Amplification of chirality
in dynamic supramolecular aggregates. Angew. Chem. Int.
Ed. 2007, 46, 8948–8968.
(7) (a) Green, M. M.; Reidy, M. P.; Johnson, R. D.; Darling, G.;
O'Leary, D. J.; Willson, G. Macromolecular stereochemistry:
the out-of-proportion influence of optically active comono-
mers on the conformational characteristics of polyisocya-
nates. The sergeants and soldiers experiment. J. Am. Chem.
Soc. 1989, 111, 6452‒6454. (b) Green, M. M.; Garetz, B. A.;
Munoz, B.; Chang, H.; Hoke, S.; Cooks, R. G. Majority Rules
in the Copolymerization of Mirror Image Isomers .J. Am.
Chem. Soc. 1995, 117, 4181-4182. (c) Green, M. M.; Cheon,
K. S.; Yang, S. Y.; Park, J. W.; Swansburg, S.; Liu, W. Chiral
studies across the spectrum of polymer science. Acc. Chem.
Res. 2001, 34, 672–680. (d) Yashima E.; Maeda K.; Iida H.;
Furusho Y.; Nagai K. Helical polymers: synthesis, structures,
and functions. Chem. Rev. 2009, 109, 6102–6211. (e) Freire,
F.; Quiñoá, E.; Riguera, R. Supramolecular Assemblies from
Poly(phenylacetylene)s. Chem. Rev. 2016, 116, 1242-1271.
(15) Dorca, Y.; Greciano, E. E.; Valera, J. S.; Gómez, R.; Sán-
chez, L. Hierarchy of asymmetry in chiral supramolecular
polymers: toward functional, helical supramolecular struc-
tures.
Chem.
Eur.
J.
2019,
25,
DOI:
10.1002/chem.201805577.
(16) (a) Narayan, B.; Bejagam, K. K.; Balasubramanian, S.;
George, S. J. Autoresolution of Segregated and Mixed p-n
Stacks by Stereoselective Supramolecular Polymerization in
Solution. Angew. Chem. Int. Ed. 2015, 54, 13053–13057. (b)
Xie, Z.; Stepanenko, V.; Radacki, K.; Würthner, F. Chiral J-
aggregates of atropo-enantiomeric perylene bisimides and
their self-sorting behavior. Chem. Eur. J. 2012, 18,
7060−7070. (c) Buendía, J.; Greciano, E. E.; Sánchez, L. In-
fluence of axial and point chirality in the chiral self-assembly
ACS Paragon Plus Environment