Inorganic Chemistry
Communication
(3) (a) Wade, C. R.; Broomsgrove, A. E. J.; Aldridge, S.; Gabbaï, F. P.
Chem. Rev. 2010, 110, 3958 andreferences therein. (b) Hudnall, T. W.;
Chiu, C. W.; Gabbaï, F. P. Acc. Chem. Res. 2009, 42, 388. (c) Kubo, Y.;
Yamamoto.; Ikeda, M.; Takeuchi, M.; Shinkai, S.; Yamaguchi, S.;
Tamao, K. Angew. Chem., Int. Ed. 2003, 42, 2036. (d) Yamaguchi, S.;
Akiyama, S.; Tamao, K. J. Am. Chem. Soc. 2001, 123, 11372.
(4) (a) Sun, Y.; Wang, S. Inorg. Chem. 2009, 48, 3755. (b) Sun, Y.;
Ross, B.; Wang, R.-Y.; Wang, S. Can. J. Chem. 2009, 87, 188. (c) Sun,
Y.; Ross, N.; Zhao, Z.-B.; Huszarik, K.; Jia, W.-L.; Wang, R.-Y.; Wang,
S. J. Am. Chem. Soc. 2007, 129, 7510.
Cu−Cu dimer upon titration with TBAF (Figure 3, inset),
however, revealed that the complexes remained intact after four
equivalents of fluoride were added (the stoichiometry of F−
required for saturation of the four boron sites) but were fully
quenched above six equivalents of TBAF. Fluorescence
experiments where copper complexes 3 and 4 were titrated
with TBAF confirmed this observation, as the ligand-centered
emission for both complexes exhibits almost complete
quenching at approximately four equivalents of TBAF.
In summary, we have described the synthesis of a new
triarylboron-appended carboxylic acid, which acts as a suitable
ligand in the facile assembly of copper(II)−carboxylate dimer
complexes. Spectroscopic characterization revealed that the
luminescent properties of these complexes are predominantly
ligand-centered. This observation was confirmed by fluoride
binding experiments, where boron-centered emission was
quenched at elevated concentrations of the fluoride anion. In
addition, dissociation of the ligand from the complexes was not
observed below four equivalents of fluoride anion, suggesting
that all four boron sites become occupied by fluoride before
dissociation occurs. These studies also suggest that the Lewis
acidity of triarylboron ligand systems in the presence of
carboxylate−metal dimers is such that the boron sites will
associate small guests well before complex degradation occurs,
making this class of metal−organic nodes an interesting
candidate for guest binding in an extended network. As such,
we have started to expand these metal−triarylborane systems
into three dimensions by employing a C3 symmetric tris-
carboxylate analogue of 2 toward the self-assembly of new
borane-containing MOFs, in addition to studying the use of 2
and other related molecules in surface functionalization.
(5) (a) Sun, Y; Hudson, Z. M.; Wang, R.-Y.; Wang, S. Inorg. Chem.
2011, 50, 3373. (b) Wang, Z.-B.; Helander, M. G.; Hudson, Z. M.;
Qiu, J.; Wang, S.; Lu, Z.-H. App. Phys. Lett. 2011, 98, 213301−1.
(c) Hudson, Z. M.; Helander, M. G.; Lu, Z.-H.; Wang, S. Chem.
Commun. 2011, 47, 755. (d) Hudson, Z. M.; Sun, C.; Helander, M. G.;
Amarne, H.; Lu, Z.-H.; Wang, S. Adv. Funct. Mater. 2010, 20, 3426.
Rao, Y.-L.; Wang, S. Inorg. Chem. 2009, 48, 7698. Rao, Y.-L.; Amarne,
H; Zhao, S.-B.; McCormick, T.; Martic, S.; Sun, Y.; Wang, R.-Y.;
Wang, S. J. Am. Chem. Soc. 2008, 130, 12898.
(6) (a) Li, H.; Lalancette, R. A.; Jakle, F. Chem. Commun. 2011,
̈
[Online] DOI: 10.1039/C1CC13287C. (b) Zlojutro, V.; Sun, Y.;
Hudson, Z. M.; Wang, S. Chem. Commun. 2011, 47, 3837.
(7) (a) Vallee, A.; Humblot, V.; Pradier, C.-M. Acc. Chem. Res. 2010,
43, 1297. (b) Spitler, M. T.; Parkinson, B. A. Acc. Chem. Res. 2009, 42,
2017. (c) Astruc, D.; Ornelas, C.; Ruiz, J. Chem.Eur. J. 2009, 15,
8936. (d) Barth, J. V. Surf. Sci. 2009, 603, 1533. (e) Koziej, D.; Barsan,
N.; Weimar, U. Sensor Lett. 2008, 6, 817.
(8) (a) Kolemen, S.; Bozdemir, O. A.; Cakmak, Y.; Barin, G.; Erten-
Ela, S.; Marszalek, M.; Yum, J.-H.; Zakeeruddin, S. M.; Nazeeruddin,
M. K.; Gratzel, M.; Akkaya, E. U. Chem. Sci. 2011, 2, 949. (b) Kim, Y.-
̈
Y.; Meldrum, F. C.; Walsh, D. Polymer Chemistry 2011, 2, 1375.
(c) Muhammad, F.; Guo, M.; Qi, W.; Sun, F.; Wang, A.; Guo, Y.; Zhu,
G. J. Am. Chem. Soc. 2011, 133, 8778. (d) Estruga, M.; Domingo, C.;
Ayllon, J. A. J. Mat. Chem. 2011, 21, 4408.
(9) (a) Reger, D. L.; Debreczeni, A.; Bryn, R.; Vitaly, R.; Smith, M.
D. Inorg. Chem. 2009, 48, 8911. (b) Shi, Q.; Sun, Y.; Sheng, L.; Ma, K.;
Cai, X.; Liu, D. Inorg. Chim. Acta 2009, 362, 4167. (c) Motokawa, N.;
Miyasaka, H.; Yamashita, M.; Dunbar, K. R. Angew. Chem., Int. Ed.
2008, 47, 7760. (d) Liu, C.-S.; Wang, J.-J.; Yan, L.-F.; Chang, Z.; Bu,
X.-H.; Sanudo, E. C.; Ribas, J. Inorg. Chem. 2007, 46, 6299.
(10) Sarma, D.; Ramanujachary, K. V.; Stock, N.; Natarajan, S. Cryst.
Growth Des. 2011, 11, 1357. Hansen, J.; Davies, H. M. L. Coord. Chem.
Rev. 2008, 252, 545. Nichols, J. M.; Liu, Y.; Zavalij, P.; Isaacs, L.;
Doyle, M. P. Inorg. Chim. Acta 2008, 361, 3309. Buijs, W.; Comba, P.;
Corneli, D.; Mengerink, Y.; Pritzkow, H.; Schickedanz, M. Eur. J. Inorg.
Chem. 2001, 3143.
(11) (a) Koeberl, M.; Cokoja, M.; Herrmann, W. A.; Kuehn, F. E.
Dalton Trans. 2011, 40, 6834. (b) Ling, Y.; Chen, Z.; Zheng, H.; Zhou,
Y.; Weng, L.; Zhao, D. Cryst. Growth Des. 2011, 11, 2811. (c) Seo, J.;
Bonneau, C.; Matsuda, R.; Takata, M.; Kitagawa, S. J. Am. Chem. Soc.
2011, 133, 9005. (d) Arslan, H. K.; Shekhah, O.; Wieland, D. C. F.;
Paulus, M.; Sternemann, C.; Schroer, M. A.; Tiemeyer, S.; Tolan, M.;
Fischer, R. A.; Woll, C. J. Am. Chem. Soc. 2011, 133, 8158. (e) Chen,
B.; Xiang, S.; Qian, G. Acc. Chem. Res. 2010, 43, 1115. (f) Vagin, S. I.;
Ott, A. K.; Rieger, B. Chem. Ing. Tech. 2007, 79, 767.
ASSOCIATED CONTENT
* Supporting Information
■
S
All experimental details for 2−4 and 2-OMe; absorption and
emission titration data for 2-OMe, 3, and 4; cyclic voltammetry
for 4; and single crystal X-ray diffraction data for 2, 3, and 4.
This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
■
ACKNOWLEDGMENTS
■
We thank the Natural Sciences and Engineering Council of
Canada (NSERC) for financial support. B.A.B. is grateful for an
NSERC Postdoctoral Fellowship.
REFERENCES
■
(12) Liu, X. Y.; Bai, D. R.; Wang, S. Angew. Chem., Int. Ed. 2006, 45,
5475.
(13) (a) Reger, D. L.; Horger, J. J.; Debreczeni, A.; Smith, M. D.
Inorg. Chem. 2011, 50, 10225. (b) Bronner, C.; Baudron, S. A.;
Hosseini, M. W. Inorg. Chem. 2010, 49, 8659.
(14) (a) Inoue, M.; Kishita, M.; Kubo, M. Inorg. Chem. 1964, 3, 239.
(b) Lewis, J.; Mabbs, F. J. Chem. Soc. 1965, 3894. (c) Francois, M. A.;
Crivelli, I.; Andrade, C. Bol. Soc. Chil. Quim. 1982, 27, 11.
(1) (a) Jakle, F. Chem. Rev. 2010, 110, 3985. (b) Hudson, Z. M.;
̈
Wang, S. Acc. Chem. Res. 2009, 42, 1584. (c) Yamaguchi, S.;
Wakamiya, A. Pure Appl. Chem. 2006, 78, 1413. (d) Entwistle, C. D.;
Marder, T. B. Chem. Mater. 2004, 16, 4574. (e) Entwistle, C. D.;
Marder, T. B. Angew. Chem., Int. Ed. 2002, 41, 2927. (f) Noda, T.;
Shirota, Y. J. Am. Chem. Soc. 1998, 120, 9714.
(2) (a) Li, F.-H.; Jia, W. L.; Wang, S.; Zhao, Y.-Q.; Lu, Z.-H. J. Appl.
Phys. 2008, 103, 034509. (b) Jia, W. L.; Feng, X. D.; Bai, D. R.; Lu, Z.
H.; Wang, S.; Vamvounis, G. Chem. Mater. 2005, 17, 164. (c) Jia, W.
L.; Moran, M. J.; Yuan, Y. Y.; Lu, Z. H.; Wang, S. J. Mater. Chem. 2005,
15, 3326. (d) Jia, W. L.; Bai, D. R.; McCormick, T.; Liu, Q. D.; Motala,
M.; Wang, R.; Seward, C.; Tao, Y.; Wang, S. Chem.Eur. J. 2004, 10,
994. (e) Doi, H.; Kinoshita, M.; Okumoto, K.; Shirota, Y. Chem. Mater.
2003, 15, 1080.
(15) Sole,
́
S.; Gabbaï, F. P. Chem. Commun. 2004, 40, 1284.
780
dx.doi.org/10.1021/ic202521z | Inorg. Chem. 2012, 51, 778−780