Journal of the American Chemical Society
Communication
attach to the substrate. Consequently, it is obvious that only a
hexahedron satisfies these conditions among the possible
structures that can be constructed from 6 1 porphyrin faces.
Remarkably, the SC1P−AuCs could be erased one by one by
applying a sample bias voltage of 3 V (Figures 5a−d). It should
be noted that the quality of the STM images for the SC1P−
AuCs did not degrade even after multiple erasing processes.
The erasing mechanism is not clear but possibly includes
multistep reductive dissociation or heat decomposition.12 This
phenomenon strongly supports that the structures observed on
STM image are distinct SC1P−AuCs. The STM images were
observed even after the multiple erasing processes. This
behavior of the SC1P-AuCs could be applied to single cluster
write-once read-many memory.
In this study, we developed a new strategy for introducing
anisotropy to isotropic nanomaterials by constructing nano-
Platonic solids. Nanohexahedra were successfully synthesized
from six porphyrin derivatives around a Au cluster. These
hexahedra are regarded as novel “artificial atoms” with
anisotropically interactive faces. We believe that this approach
using spherical nanoparticles is a novel self-assembly technique,
because the formation of Platonic solid is automatically
determined by the relationship between the diameter of the
inscribed sphere and shapes/sizes of the polygonal faces. The
present strategy could be expanded to other Platonic solids.
Controlled fabrication of suprastructures from the clusters
could be possible by assembling the nanohexahedra through
coordination on the metal center of the metalloporphyrin
derivatives. Furthermore, because of low tunnel resistance from
the thin layer of protecting ligands and distance-dependent
interaction between the porphyrin and Au cluster, the present
hexahedra could function as Coulombic islands in single
electron transistors. Research on single electron transistors
using these hexahedra is now in progress.
Education, Science and Technology of Korea (R31-10022)
(Y.M.).
REFERENCES
■
(1) (a) Mann, S. Nat. Mater. 2009, 8, 781. (b) Glotzer, S. C.;
Solomon, M. J. Nat. Mater. 2007, 6, 557. (c) Li, F.; Josephson, D. P.;
Stein, A. Angew. Chem., Int. Ed. 2011, 50, 360. (d) Talapin, D. V.; Lee,
J.-S.; Kovalenko, M. V.; Shevchenko, E. V. Chem. Rev. 2009, 110, 389.
(2) (a) Holst, J. R.; Trewin, A.; Cooper, A. I. Nat. Chem. 2010, 2,
915. (b) Mal, P.; Breiner, B.; Rissanen, K.; Nitschke, J. R. Science 2009,
324, 1697. (c) Tozawa, T.; et al. Nat. Mater. 2009, 8, 973. (d) Fujita,
M.; Tominaga, M.; Hori, A; Therrien, B. Acc. Chem. Res. 2005, 38, 369.
(3) (a) Jones, M. R.; Macfarlane, R. J.; Lee, B.; Zhang, J.; Young, K.
L.; Senesi, A. J.; Mirkin, C. A. Nat. Mater. 2010, 9, 913. (b) Park, S. Y.;
Lytton-Jean, A. K. R.; Lee, B.; Weigand, S.; Schatz, G. C.; Mirkin, C. A.
Nature 2008, 451, 553. (c) Doppelbauer, G.; Bianchi, E.; Kahl, G. J.
Phys.: Condens. Matter 2010, 22, 104105. (d) Grzelczak, M.; Vermant,
́
J.; Furst, E. M.; Liz-Marzan, L. M. ACS Nano 2010, 4, 3591.
(e) Shirman, T.; Arad, T.; van der Boom, M. E. Angew. Chem., Int. Ed.
2010, 49, 926.
(4) DeVries, G. A.; Brunnbauer, M.; Hu, Y.; Jackson, A. M.; Long, B.;
Neltner, B. T.; Uzun, O.; Wunsch, B. H.; Stellacci, F. Science 2007,
315, 358.
(5) Kanehara, M.; Takahashi, H.; Teranishi, T. Angew. Chem., Int. Ed.
2008, 47, 307.
(6) (a) Zhang, Y.-H.; Ruan, W.-J.; Li, Z.-Y.; Wu, Y.; Zheng, J.-Y.
Chem. Phys. 2005, 315, 201. (b) Bose, K.; Huang, J.; Haggerty, B. S.;
Rheingold, A. L.; Salm, R. J.; Walters, M. A. Inorg. Chem. 1997, 36,
4596.
(7) (a) Osuka, A.; Maruyama, K. J. Am. Chem. Soc. 1988, 110, 4454.
(b) Muranaka, A.; Asano, Y.; Tsuda, A.; Osuka, A.; Kobayashi, N.
ChemPhysChem 2006, 7, 1235.
(8) (a) Schaaff, T. G. Anal. Chem. 2004, 76, 6187. (b) Arnold, R. J.;
Reilly, J. P. J. Am. Chem. Soc. 1998, 120, 1528.
(9) Tsunoyama, H.; Tsukuda, T. J. Am. Chem. Soc. 2009, 131, 18216.
(10) The sample preparation of SC2P−AuCs was extremely difficult
owing to their brittleness. Therefore, we could not observe the STM-
image of SC2P−AuCs.
(11) (a) Liljeroth, P.; Zeijlmans van Emmichoven, P. A.; Hickey, S.
G.; Weller, H.; Grandidier, B.; Allan, G.; Vanmaekelbergh, D. Phys.
Rev. Lett. 2005, 95, 086801. (b) Overgaag, K.; Vanmaekelbergh, D.;
Liljeroth, P.; Mahieu, G.; Grandidier, B.; Delerue, C.; Allan, G. J.
Chem. Phys. 2009, 131, 224510.
(12) (a) Widrig, C. A.; Chung, C.; Porter, M. D. J. Electroanal. Chem.
1991, 310, 335. (b) Azzaroni, O.; Vela, M. E.; Martin, H.; Hernandez
́
Creus, A.; Andreasen, G.; Salvarezza, R. C. Langmuir 2001, 17, 6647.
ASSOCIATED CONTENT
■
S
* Supporting Information
Synthesis of SCnP, SCnP−AuCs, SC1, and SC1-protected AuCs.
Characterization of SC1-protected AuCs. Sample preparation
and instrumental setup for STM imaging. Single crystal X-ray
crystallography of SCnP. The complete list of authors for
reference 2c. This material is available free of charge via the
(13) Horcas, I.; Fernandez, R.; Gomez-Rodriguez, J. M.; Colchero, J.;
Gom
́
ez-Herrero, J.; Baro, A. M. Rev. Sci. Instrum. 2007, 78, 013705.
AUTHOR INFORMATION
■
Corresponding Author
ACKNOWLEDGMENTS
■
The authors thank Prof. A. Sekiguchi and Dr. M. Ichinohe for
their help with X-ray crystallography. The authors are grateful
to the Chemical Analysis Center, University of Tsukuba, for
elemental analysis data. This study was partially supported by a
KAKENHI Grant-Aid for Scientific Research A (no. 23245028)
(T.Teranishi) and a Grant-in-Aid for Scientific Research on
Innovative Areas (grant no. 20108011, π-Space) from the
Ministry of Education, Culture, Sports, Science and Technol-
ogy (MEXT), Japan (Y.M.), by the Global COE Program of
“Photonics Integration-Core Electronics” MEXT (Y.M.), by the
Collaborative Research Project of Materials and Structures
Laboratory, Tokyo Institute of Technology, and by the World
Class University (WCU) Program through the Ministry of
819
dx.doi.org/10.1021/ja209634g | J. Am. Chem.Soc. 2012, 134, 816−819