and buteno-lides.8 Other examples include acid-catalyzed
molecular rearrangement of 2-furylcarbinols into cyclo-
pentenones9 and nucleophilic addition to furanÀchromium
complexes.10 As a consequence, the development of a new
method for the dearomatization of furan rings continues to
be an active and rewarding research area.
Recently, we and other groups have disclosed accesses
to spiro-compounds 2 and other bioactive molecules
starting from furycarbinol 1 tethered to a side chain at the
R-position of its furan ring with a nucleophile (Scheme 1).11
We began by synthesizing 2-(furan-2-ylmethoxy)-
but-2-enedioic acid dimethyl ester (8a) via the addition reac-
tion of furfuryl alcohol (3a) with dimethyl 2-butynedioate
(7) in the presence of a catalytic amount (10 mol %)
of DABCO (Scheme 2).13 After completion of the addi-
tion reaction, 5 mol % of Pd(OAc)2 was added, and the
reaction mixture was then heated at 80 °C for 24 h to
undergo the Claisen rearrangement step.14 Unexpectedly,
no Claisen rearrangement-type product 4a was observed.
Scheme 2. Synthesis of 5a from 3a
Scheme 1. Synthetic Application of Furans Characterized by
Dearomatization
Instead, 3a,6a-dihydro-furo[2,3-b]furan 5a was formed
with a moderate yield (54%) over two steps. This un-
expected result is especially interesting and useful because
it provides a novel entry to 3a,6a-dihydro-furo[2,3-b]-
furans, key structural units in many important pharma-
ceuticals and bioactive natural products.15 Additionally,
5a is stable enough to store on the bench for several
months and can also be used as a versatile intermediate
for the construction of many other useful molecules.
Moreover, this transformation presented an unprece-
dented method for the dearomatization of five-membered
The key step involves the dearomatization of the
furan ring through an acid-catalyzed intramolecular
allylation-like reaction. These achievements encouraged
usto develop more novel strategies directed toward the
dearomatization of furan ring of 2-furylcarbinol and
expanding its synthetic applications. Electrocyclic
reaction of common conjugated poylenes (4π or 6π
electron system) is a well-known method for the pre-
paration of cyclic compounds.12 Nevertheless, to the
best of our knowledge, the dearomatizing electrocyclic
reaction involving π-electrons of the aromatic ring is
seldom reported. In this communication, we reported
the facile synthesis of 3a,6a-dihydro-furo[2,3-b]furan
derivatives 5 and polysubstituted furan 6 using
2-furylcarbinol as the starting material, which involved a
domino palladium-catalyzed Claisen rearrangement/
dearomatizing eletrocyclic ring-closure/aromatizing eletro-
cyclic ring-opening sequence.
(10) (a) Harman, W. D. Chem. Rev. 1997, 97, 1953. (b) Chen, H.;
Hodges, L. M.; Liu, R.; Stevens, W. C., Jr.; Sabat, M.; Harman, W. D.
J. Am. Chem. Soc. 1994, 116, 5499. (c) Chen, H.; Liu, R.; Myers, W. H.;
Harman, W. D. J. Am. Chem. Soc. 1998, 120, 509. (d) Smith, P. L.;
Chordia, M. D.; Harman, W. D. Tetrahedron 2001, 57, 8203.
(11) (a) Yin, B.-L.; Yang, Z.-M.; Hu, T.-S.; Wu, Y.-L. Synthesis 2003,
1995. (b) Chen, L.; Xu, H.-H.; Yin, B.-L.; Xiao, C.; Hu, T.-S.; Wu, Y.-L.
J. Agric. Food Chem. 2004, 52, 6719. (c) Yin, B.-L.; Hu, T.-S.; Wu, Y.-L.
Tetrahedron Lett. 2004, 45, 2017. (d) Yin, B.-L.; Wu, Y.-L.; Lai, J.-Q.
Eur. J. Org. Chem. 2009, 2695. (e) Palmer, L. I.; Read de Alaniz, J.
Angew. Chem., Int. Ed. 2011, 50, 7167. (f) Yin, B.-L.; Lai, J.-Q.; Zhang,
Z.-R.; Jiang, H.-F. Adv. Synth. Catal. 2011, 353, 1961.
(12) (a) Matsuya, Y.; Ohsawa, N.; Nemoto, H. J. Am. Chem. Soc.
2006, 128, 13072. (b) Rueping, M.; Ieawsuwan, W.; Antonchick, A. P.;
Nachtsheim, B. J. Angew. Chem., Int. Ed. 2007, 46, 2097. (c) Takahashi,
A.; Hirose, Y.; Kusama, H.; Iwasawa, N. Chem. Commun. 2008, 609. (d)
Jana, R.; Chatterjee, I.; Samanta, S.; Ray, J. K. Org. Lett. 2008, 10, 4795.
(e) Hieda, Y.; Choshi, T.; Kishida, S.; Fujioka, H.; Hibino, S. Tetra-
hedron Lett. 2010, 51, 3593. (f) Tang, X.-Y.; Wei, Y.; Shi, M. Org. Lett.
2010, 12, 5120.
(7) (a) Harris, J. M.; Padwa, A. J. Org. Chem. 2003, 68, 4371. (b) Yim,
H.-K.; Wong, H. N. C. J. Org. Chem. 2004, 69, 2892. (c) Cong, X.; Liu,
K.-G.; Liao, Q.-J.; Yao, Z.-J. Tetrahedron Lett. 2005, 46, 8567. (d) Bi, J.;
Aggarwal, V. K. Chem. Commun. 2008, 1, 120. (e) Harris, J. M.; Padwa,
A. Org. Lett. 2002, 4, 2029.
(13) (a) Cao, H.; Jiang, H.; Yao, W.; Liu, X. Org. Lett. 2009, 11, 1931.
(14) Other Lewis acids such as CuSO4, ZnCl2, and CuCl2 were also
tested, but all resulted in a complicated reaction system. For related
examples concerning palladium-catalyzed Claisen rearrangement, see:
(a) Overman, L. E. Angew. Chem., Int. Ed. 1984, 23, 579. (b) Baan, J. L.;
Bickelhaupt, F. Tetrahedron Lett. 1988, 27, 6267. (c) Hiersemann, M.
Synlett 1999, 1823. (d) Watson, D. J.; Devine, P. N.; Meyers, A. I.
Tetrahedron Lett. 2000, 41, 1363.
(15) (a) Marino, J. P.; Kieler, K. A.; Kim, M.-W. Tetrahedron 2011,
67, 837. (b) Lee, N. A.; Wang, S.; Allan, R. D.; Kennedy, I. R. J. Agric.
Food. Chem. 2004, 52, 2746. (c) Trost, B. M.; Toste, F. D. J. Am. Chem.
Soc. 2003, 125, 3090.
(8) (a) Lee, H. K.; Wong, H. N. C. Chem. Commun. 2002, 18, 2114. (b)
Margaros, I.; Montagnon, T.; Vassilikogiannakis, G. Org. Lett. 2007, 9,
5585. (c) Margaros, I.; Vassilikogiannakis, G. J. Org. Chem. 2008, 73,
2021. (d) Pavlakos, E.; Georgiou, T.; Tofi, M.; Montagnon, T.;
Vassilikogiannakis, G. Org. Lett. 2009, 11, 4556. (e) Dong, J.-Q.;
Wong, H. N. C. Angew. Chem., Int. Ed. 2009, 48, 2351.
(9) (a) Dygos, J. H.; Adamek, J. P.; Babiak, K. A.; Behling, J. R.;
Medich, J. R.; Ng, J. S.; Wieczorek, J. J. J. Org. Chem. 1991, 56, 2549. (b)
Rodriguez, A.; Nomen, M.; Spur, B. W.; Godfroid, J. Eur. J. Org. Chem.
1999, 2655. (c) Yin, B.-L.; Wu, Y.-K.; Wu, Y.-L. J. Chem. Soc., Perkin
Trans. 1 2002, 1746. (d) Veits, G. K.; Wenz, D. R.; Read de Alanz, J.
Angew. Chem., Int. Ed. 2010, 49, 9484.
Org. Lett., Vol. 14, No. 2, 2012
617