T. Darmanin et al. / Journal of Fluorine Chemistry 134 (2012) 85–89
89
[4] (a) L. Li, Z.S. Xu, G.W. Song, J. Fluorine Chem. 130 (2009) 225–230;
the conductivity of the film with the deposition time was observed
for DS8 and DS6. Hence, the deposition speed was higher with DS4.
(b) P. Raychaudhuri, Q. Li, A. Mason, E. Mikhailova, A.J. Heron, H. Bayley, Bio-
chemistry 50 (2011) 1599–1606.
[5] G. Martini, M. Balzi, A. Becciolini, S. Ristori, S. Rossi, J. Fluorine Chem. 125 (2004)
253–259.
7. Surface characterization
[6] (a) Z. Hu, W. Verheijen, J. Hofkens, A.M. Jonas, J.-F. Gohy, Langmuir 23 (2007)
116–122;
The polymer films were characterized by contact angle
measurements. Surprisingly, superhydrophobic films with static
contact angle of water (CAwater) of 1588 were obtained with the
monomer containing the shortest fluorinated chains (DS4), as
shown in Table 2. Using the tilted-drop method, water droplets did
not roll off the surfaces after inclination, which means that the
surfaces were sticky. Hence, these surfaces were more hydropho-
bic than that previously obtained from pyrrole analogues [24]. In
contrast, polyDS6 and polyDS8 were only hydrophobic with quite
the same value for the two polymers (CAwater ꢃ 114–1158). The
static contact angles of diiodomethane and hexadecane were also
higher for polyDS4. The very high contact of polyDS4 being
probably due to surface morphology, the polymer was analyzed by
scanning electron microscopy (SEM).
SEM images of the polymer are given in Fig. 7. On one hand,
polyDS4 was extremely structured and the surface morphology
consisted in an assembly of sub-micronic needles (Fig. 7A and B),
which confirms their exceptional surface anti-wetting properties.
On the other hand, polyDS6 surfaces were composed of well-
ordered (in two dimensions) nanoparticles (Fig. 7C) and polyDS8
was relatively smooth (Fig. 7D). The low roughness of these two
films explains their low anti-wetting properties.
(b) A. Gonza´lez-Pe´rez, M. Schmutz, G. Waton, M.J. Romero, M.P. Krafft, J. Am.
Chem. Soc. 129 (2007) 756–757.
[7] M. Ragnoli, E. Pucci, M. Bertolucci, B. Gallot, G. Galli, J. Fluorine Chem. 125 (2004)
283–292.
´
´
¨
[8] (a) M. Al-Hussein, Y. Serero, O. Konovalov, A. Mourran, M. Moller, W.H. de Jeu,
Macromolecules 38 (2005) 9610–9616;
´
´
(b) K. Zimny, J.L. Blin, M.J. Stebe, J. Phys. Chem. C 113 (2009) 11285–11293.
[9] (a) H. Sawada, T. Narumi, M. Kiyohara, M. Baba, J. Fluorine Chem. 128 (2007)
1416–1420;
(b) H. Skaat, G. Belfort, S. Margel, Nanotechnology 20 (2009) 225106.
[10] (a) C. Gentilini, F. Evangelista, P. Rudolf, P. Franchi, M. Lucarini, L. Pasquato, J. Am.
Chem. Soc. 130 (2008) 15678–15682;
(b) M. Mugisawa, H. Sawada, Langmuir 24 (2008) 9215–9218.
[11] (a) Z.-X. Jiang, Y.B. Yu, J. Org. Chem. 75 (2010) 2044–2049;
(b) H. Yoshioka, M. Suzuki, M. Mugisawa, N. Naitoh, H. Sawada, J. Colloid Interface
Sci. 308 (2007) 4–10.
[12] (a) A.-M. Caminade, C.-O. Turrin, P. Sutra, J.-P. Majoral, Curr. Opin. Colloid
Interface Sci. 8 (2003) 282–295;
(b) W.R. Glomm, M.-H. Glomm Ese, S. Volden, C. Pitois, A. Hult, J. Sjo¨blom,
Colloids Surf. A 299 (2007) 186–197.
[13] (a) R. Tayouo, G. David, B. Ame´duri, J. Rozie`re, S. Roualde`s, Macromolecules 43
(2010) 5269–5276;
(b) A. Gugliuzza, M. Aceto, S. Simone, E. Curcio, R. Madonna, G. Di Profio, E. Drioli,
Desalination 199 (2006) 200–203.
[14] (a) N. Idupulapati, R. Devanathan, M. Dupuis, J. Phys. Chem. B 115 (2011)
2959–2969;
(b) M. Ramanathan, H.-J. Mu¨ller, H. Mo¨hwald, R. Krastev, Appl. Mater. Interfaces 3
(2011) 633–637.
[15] (a) R.D. Weinstein, J. Moriarty, E. Cushnie, R. Colorado Jr., T.R. Lee, M. Patel, W.R.
Alesi, G.K. Jennings, J. Phys. Chem. B 107 (2003) 11626–11632.
[16] (a) G. Schottner, Chem. Mater. 13 (2001) 3422–3435;
(b) J.-W. Ha, I.J. Park, S.-B. Lee, Macromolecules 41 (2008) 8800–8806.
[17] R.R. Thomas, in: G. Hougham, P.E. Cassidy, K. Johns, T. Davidson (Eds.), Fluor-
opolymers 2, Kluwer Academic/Plenum Publishers, New York, 1999.
[18] R.E. Banks, J.C. Tatlow, in: R.E. Banks, B.E. Smart, J.G. Tatlow (Eds.), Organofluorine
Chemistry, Plenum Press, New York, 1994.
[19] (a) A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40 (1944) 546–551;
(b) S. Baxter, A.B.D. Cassie, J. Text. Ind. 36 (1945) T67–90.
[20] R.N. Wenzel, Ind. Eng. Chem. 28 (1936) 988–994.
[21] (a) T. Darmanin, F. Guittard, J. Am. Chem. Soc. 131 (2009) 7928–7933;
(b) T. Darmanin, F. Guittard, J. Mater. Chem. 19 (2009) 7130–7136;
(c) A. Zenerino, T. Darmanin, E. Taffin de Givenchy, S. Amigoni, F. Guittard,
Langmuir 26 (2010) 13545–13549.
8. Conclusion
Wehavereported the synthesisof a series of monomers bearing a
single phenyl unit as mesogenic group between the heterocyclic
core(thiophene)and thehighly fluorinatedtailwithfour, six oreight
fluoromethyleneunits(DS4, DS6, DS8). These compounds exhibiteda
liquid crystal behaviour of smecticA type which can be used to avoid
or limit the surface reconstructions of the corresponding polymers
in the presence of polar media. Polymer films were obtained using
sodium perchlorate as salt for the electrodeposition. Superhydro-
phobicfilmswithstaticcontactangleof1588wereobtainedfromthe
monomer containing a F-butyl chain. The surface morphology of
these films consisted in an assembly of sub-micronic needles.
[22] (a) T. Darmanin, E. Taffin de Givenchy, S. Amigoni, F. Guittard, Langmuir 26
(2010) 17596–17602;
(b) T. Darmanin, F. Guittard, S. Amigoni, E. Taffin de Givenchy, X. Noblin, R.
Kofman, F. Celestini, Soft Matter 7 (2011) 1053–1057;
(c) T. Darmanin, F. Guittard, Langmuir 25 (2009) 5463–5466.
[23] L. Caillier, E. Taffin de Givenchy, S. Ge´ribaldi, F. Guittard, J. Mater. Chem. 18 (2008)
5382–5389.
References
[24] T. Darmanin, E. Taffin de Givenchy, F. Guittard, Macromolecules 43 (2010)
9365–9370.
[1] (a) T. Hayakawa, J. Wang, M. Xiang, X. Li, M. Ueda, C.K. Ober, J. Genzer, E. Sivaniah,
E.J. Kramer, D.A. Fisher, Macromolecules 33 (2000) 8012–8019;
(b) M. Xiang, X. Li, C.K. Ober, K. Char, J. Genzer, E. Sivaniah, E.J. Kramer, D.A. Fisher,
Macromolecules 33 (2000) 6106–6119.
[2] K. Grundke, D. Pospiech, W. Kolling, F. Simon, A. Janke, Colloid Polym. Sci. 279
(2001) 727–735.
´
[25] L. Caillier, F. Guittard, E. Taffin de Givenchy, S. Geribaldi, Mol. Cryst. Liq. Cryst. 437
(2005) 1315–1324.
´
[26] G. Fornasieri, F. Guittard, S. Geribaldi, Liq. Cryst. 30 (2003) 251–257.
[27] E. Taffin de Givenchy, F. Guittard, F. Bracon, A. Cambon, Liq. Cryst. 26 (1999)
1163–1170.
[3] (a) M. Oumar, E. Taffin de Givenchy, S.Y. Dieng, S. Amigoni, F. Guittard, Langmuir
27 (2011) 1668–1674;
[28] K. Honda, M. Morita, H. Otsuka, A. Takahara, Macromolecules 38 (2005) 5699–
5705.
(b) P. Thebault, E. Taffin de Givenchy, R. Levy, Y. Vandenberghe, S. Ge´ribaldi, F.
Guittard, J. Fluorine Chem. 131 (2010) 592–596.