(4857 unique, two-component twin), R1 = 0.0423 and wR2
0.1077 [I 4 2s(I)], Rint = 0.0461, GOF = 1.08, flack = 0.54(6).
Crystal data for (R)-3 (photodimerized): C28H34N2O12S2, Mr
=
=
654.71, Triclinic space group P1, a = 7.8647(3), b = 8.0522(3), c =
11.7930(5) A, a = 83.951(2), b = 77.725(2), g = 89.754(2)1,
V = 725.57(5) A3, Z = 1, Dc = 1.498 g cmꢁ3, m = 2.270 mmꢁ1
,
F000 = 344, T = 100(2)K, 2ymax = 67.321, 4698 reflections collected
(4698 unique, two-component twin), R1 = 0.0499 and wR2 = 0.1250
[I 4 2s(I)], Rint = 0.0581, GOF = 1.03, flack = 0.09(2).
1 For selected reviews, see: J. F. Hartwig, Organotransition Metal
Chemistry: From Bonding to Catalysis, University Science Books,
Mill Valley, CA, 2010; Polymeric Chiral Catalyst Design and Chiral
Polymer Synthesis, ed. S. Itsuno, Wiley-VCH Verlag GmbH,
Weinheim, Germany, 2011; X. Sun, C. J. Reedy and
B. R. Gibney, Chem. Rev., 2004, 104, 617; Organocatalysis,
ed. M. T. Reetz, B. List, S. Jaroch and H. Weinmann, Springer,
Berlin, 2008; H. U. Vora and T. Rovis, Aldrichimica Acta, 2011, 44, 3.
2 For selected reviews, see: Molecular Devices and Machines,
ed. V. Balzani, A. Credi and M. Venturi, Wiley-VCH Verlag
GmbH, Weinheim, Germany, 2008; V. Balzani, A. Credi and
M. Venturi, Chem. Soc. Rev., 2011, 38, 1542; Y. Krishnan and
Fig. 3 Structure of (R)-3 showing the asymmetric unit (50%
probability) and spatial influence of the isopropyl group.
F. C. Simmel, Angew. Chem., Int. Ed., 2011, 50, 3124; E. M. Pe
Angew. Chem., Int. Ed., 2011, 50, 3359.
´
rez,
3 Y. Liu, C. Hu, A. Comotti and M. D. Ward, Science, 2011,
333, 436; S. D. Karlen, H. Reyes, R. E. Taylor, S. I. Khan,
M. F. Hawthorne and M. A. Garcia-Garibay, Proc. Natl. Acad.
Sci. U. S. A., 2010, 107, 14973.
4 Organic Crystal Engineering: Frontiers in Crystal Engineering,
ed. E. R. T Tiekink, J. Vittal and M. Zaworotko, John Wiley & Sons,
Ltd, Chichester, UK, 2010; G. R. Desiraju, Angew. Chem., Int. Ed.,
Fig. 4 Solid-state photodimerization of (R)-3 assessed using
1
single-crystal X-ray diffraction (top) and H NMR (bottom).
Such experimental results indicate a time dependent decrease
in reactant and increase in product signals with 90% conver-
sion (67 h).
2007, 46, 8342; C. B. Aakeroy, N. R. Champness and C. Janiak,
CrystEngComm, 2010, 12, 22.
¨
5 (a) M. B. Hickey, R. F. Schlam, C. Guo, H. Chengyun, T. H. Cho,
B. B. Snider and B. M. Foxman, CrystEngComm, 2011, 13, 3146;
(b) I. Zouev, D.-K. Cao, T. V. Sreevidya, M. Telzhensky,
M. Botoshansky and M. Kaftory, CrystEngComm, 2011,
13, 4376; (c) D.-K. Cao, T. V. Sreevidya, M. Botoshansky,
G. Golden, J. Benedict and M. Kaftory, J. Phys. Chem. A, 2010,
114, 7377; (d) R. Santra and K. Biradha, CrystEngComm, 2011,
13, 3246; L. R. MacGillivray, J. Org. Chem., 2008, 73, 3311;
(e) G. K. Kole, G. K. Tan and J. J. Vittal, Org. Lett., 2010,
12, 128; (f) D. Liu, Z.-G. Ren, H.-X. Li, J.-P. Lang, N.-Y. Li and
B. Abrahams, Angew. Chem. Int. Ed., 2010, 49, 4767;
(g) M. Nagarathinam, A. M. P. Peedikakkal and J. J. Vittal, Chem.
Commun., 2008, 5277.
6 I. Weissbuch and M. Lahav, Chem. Rev., 2011, 3236.
7 M. Vaida, L. J. W. Shimon, J. van Mil, K. Ernst-Cabrera,
L. Addadi, L. Leiserowitz and L. Lahav, J. Am. Chem. Soc.,
1989, 111, 1029; M. Vaida, L. J. W. Himon, Y. Weisinger-Lewin,
F. Frolow, H. Lahav, L. Leiserowotz and R. K. McMullan,
Science, 1988, 241, 1475; F. Toda and K. Mori, J. Chem. Soc.,
Chem. Commun., 1989, 17, 1245; F. Toda, in Topics in Stereo-
chemistry Vol. 25, ed. S. E. Denmark and J. S. Siegel, John Wiley &
Sons, Hoboken, NJ, 2006, ch. 1, pp. 1–29.
8 (a) R. C. Grove, S. H. Malehorn, M. E. Breen and K. A. Wheeler,
Chem. Commun., 2010, 46, 7322; (b) K. A. Wheeler, J. D. Wiseman
and R. C. Grove, CrystEngComm, 2011, 13, 3134.
9 M. D. Cohen and G. M. J. Schmidt, J. Chem. Soc., 1964, 1996.
10 K. S. Feldman, R. F. Campbell, J. C. Saunders, C. Ahn and
K. M. Masters, J. Org. Chem., 1997, 62, 8814.
11 M. Kahn, V. Enkelmann and G. Brunklaus, Cryst. Growth Des.,
2009, 9, 2354; I. Abdelmoty, V. Buchholz, L. Di, V. Enkelmann,
G. Wegner and B. M. Foxman, Cryst. Growth Des., 2005, 5,
2210; J. B. Benedict and P. Coppens, J. Phys. Chem. A, 2009,
113, 3116.
In summary, the persistent formation of supramolecular
dimers underscores this approach as a viable method for
organizing programmed reactivity in molecular crystals.
Despite the chemical and spatial diversity of alkyl groups
inspected to date (i.e. Me, Et, and i-Pr), the recognition
profiles of these sulfonamidecinnamic acids result in fish hook
conformations and discrete motifs that efficiently direct [2+2]
photocylcoaddition reactions. Both (rac)-3 and (R)-3 undergo
remarkable SCSC transformations that result in achiral and
homochiral photoproducts, respectively.
This work was supported by the National Science Founda-
tion (CHE-0957391 and CHE-0722547).
Notes and references
z Crystallographic data. X-ray diffraction data for (rac)- and (R)-3
were collected with a Bruker APEX-II equipped with a graphite-
monochromator using Cu-Ka radiation (l = 1.54178 A).
Crystal data for (rac)-3 (reactant): C14H17NO6S, Mr = 327.35,
%
Triclinic space group P1, a = 7.2401(1), 7.2996(1), c = 15.8742(3) A,
a = 88.734(1), b = 87.853(1), g = 64.951(1)1, V = 759.49(2) A3, Z = 2,
Dc = 1.431 g cmꢁ3, m = 2.169 mmꢁ1, F000 = 344, T = 100(2)K,
2ymax = 68.241, 15 072 reflections collected (2710 unique), R1 = 0.0485
and wR2 = 0.1270 [I 4 2s(I)], Rint = 0.0467, GOF = 1.12.
Crystal data for (rac)-3 (photodimerized): C28H34N2O12S2, Mr = 654.71,
Triclinic space group P1, a = 7.4391(3), b = 7.6719(3), c = 15.0529(7) A,
a = 88.371(3), b = 85.421(3), g = 61.552(2)1, V = 752.91(5) A3, Z = 1,
Dc = 1.444 g cmꢁ3, m = 2.188 mmꢁ1, F000 = 344, T = 100(2)K, 2ymax
=
66.771, 13 224 reflections collected (2563 unique), R1 = 0.0751 and wR2 =
0.1959 [I 4 2s(I)], Rint = 0.0623, GOF = 1.15.
12 S. P. Kelley, L. Fabian and C. P. Brock, Acta. Crystallogr., 2011,
B67, 79; M. Hendi, P. Hooter, V. Lynch, R. E. Davis and
K. A. Wheeler, Cryst. Growth Des., 2004, 4, 95; B. Dalhus and
C. H. Gorbitz, Acta Crystallogr., Sect. B: Struct. Sci., 2000,
B56, 715.
Crystal data for (R)-3 (reactant): C14H17NO16S, Mr = 327.35,
Triclinic space group P1, a = 7.9008(2), b = 8.0121(2), c =
11.8061(3) A, a = 83.617(1), b = 77.774(2), g = 88.744(2)1, V =
725.87(3) A3, Z = 2, Dc = 1.498 g cmꢁ3, m = 2.269 mmꢁ1, F000
=
13 C. Dryzun, A. Zait and D. Avnir, J. Comput. Chem., 2011,
32, 2526.
344, T = 100(2)K, 2ymax = 67.571, 4857 reflections collected
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 519–521 521