10.1002/chem.201900118
Chemistry - A European Journal
COMMUNICATION
In the pyrimidopteridines N-oxides, the d(N−O) bond lengths are
relatively short, with a mean value of about 1.26 Å. In
comparison with typical N–O single bonds in hydroxylamines
(1.45 Å) and N=O double bonds in nitrosoalkanes (1.27 Å), the
crystallographic data suggests that this bond should be
considered as a strong non-polar dative N−O bond, stabilized by
π-type N−O back-donation, rather than a polar covalent bond
N+−O−.[22] Thus, we propose that the NCI originates from lone-
pair−π-hole rather than anion− π -hole interaction.
[2]
a) R. Teufel, F. Stull, M. J. Meehan, Q. Michaudel, P. C. Dorrestein,
B. Palfey, B. S. Moore, J. Am. Chem. Soc. 2015, 137, 8078-8085;
b) R. Teufel, A. Miyanaga, Q. Michaudel, F. Stull, G. Louie, J. P.
Noel, P. S. Baran, B. Palfey, B. S. Moore, Nature 2013, 503, 552.
S. Adak, T. P. Begley, J. Am. Chem. Soc. 2016, 138, 6424-6426.
S. Adak, T. P. Begley, Biochemistry 2017, 56, 3708-3709.
a) T. Hering, B. Mühldorf, R. Wolf, B. König, Angew. Chem. Int.
Ed.2016, 55, 5342-5345; b) C. Feldmeier, H. Bartling, K. Magerl, R.
M. Gschwind, Angew. Chem. Int. Ed. 2015, 54, 1347-1351.
M. Sako, K. Shimada, K. Hirota, Y. Maki, J. Am. Chem. Soc. 1986,
108, 6039-6041.
[3]
[4]
[5]
[6]
[7]
Table 2. N-Oxide N−O bond length; distance of lone-pair−π hole interaction
and angles between two adjacent molecules.
a) M. Sako, S. Ohara, K. Hirota, Y. Maki, J. Chem. Soc. Perk.
Trans 1 1990, 3339-3344; b) M. Sako, K. Hirota, Y. Maki, Chem.
Pharm. Bull. 1990, 38, 2069-2071; cM. Sako, S. Ohara, K.
Shimada, K. Hirota, Y. Maki, J Chem Soc Perk T 1 1990, 863-868.
a) M. Sako, K. Shimada, K. Hirota, Y. Maki, Tetrahedron Lett. 1986,
27, 3877-3880; b) Y. Maki, M. Sako, I. Oyabu, T. Murase, Y.
Kitade, K. Hirota, J Chem Soc Chem Comm 1989, 1780-1782; c) Y.
Maki, I. Oyabu, S. Ohara, M. Sako, Y. Kitade, K. Hirota, Chem.
Pharm. Bull. 1989, 37, 3239-3242.
compounds
d(N-O) [Å]
1.257
d(O-pyr) [Å][a]
2.719
angle[b]
76°
1
2
3
4
1.256
2.797
85°
[8]
[9]
1.263
2.783
29°
1.257
2.765
68°
[a] Distance between O(5) atom and plane defined by C(4a)–N(5)–C(5a); [b]
angle between two planes defined by C(4a)–N(5)–C(5a) of neighbouring
molecules.
The synthesis involves a radical dimerization of a nitrosoamino
intermediate. In the seminal report, this step was accomplished
using lead(IV) tetraacetate. We have successfully revised this
sequence using phenyliodo diacetate (PIDA) as radical initiator.
A detailed comparison on the preformance of PhI(OAc)2 vs
Pb(OAc)4 is reported in the SI.
In summary, we report the photo- and electrochemical
characterization
of
pyrimidopteridine
N-oxide
based
[10]
[11]
[12]
[13]
[14]
heterocycles. The heteroarene based photosensitizers display
excellent stability and robustness as compared to commonly
used photosensitizers and can be synthesized on gram-scale
from inexpensive starting material. Here, we demonstrated its
application as potent organic photoredox catalyst for the first
time. Furthermore, unprecedented intermolecular non-covalent
n–π hole interactions of the pyrimidopteridine N-oxides based on
crystallographic data is described and is supported by DFT
calculations.
H. G. Roth, N. A. Romero, D. A. Nicewicz, Synlett 2016, 27, 714-
723.
D. T. Sawyer, G. Chiericato, C. T. Angelis, E. J. Nanni, T. Tsuchiya,
Anal. Chem. 1982, 54, 1720-1724.
C. Lu, W. Lin, W. Wang, Z. Han, S. Yao, N. Lin, Phys. Chem.
Chem. Phys 2000, 2, 329-334.
a) J. B. Metternich, R. Gilmour, J. Am. Chem. Soc. 2015, 137,
11254-11257; b) J. J. Molloy, J. B. Metternich, C. G. Daniliuc, A. J.
B. Watson, R. Gilmour, Angew. Chem. 2018, 130, 3222-3226; c) J.
B. Metternich, D. G. Artiukhin, M. C. Holland, M. von Bremen-
Kühne, J. Neugebauer, R. Gilmour, J. Org. Chem. 2017, 82, 9955-
9977; d) J. B. Metternich, R. Gilmour, Synlett 2016, 27, 2541-2552.
For an example using a fluorene catalyst, see: W. Cai, H. Fan, D.
Ding, Y. Zhang, W. Wang, Chem. Commun. 2017, 53, 12918-
12912.
Acknowledgements
This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – 401007518 and by the
European Union (ESF/14-BM-A55-0049/16). We thank Dr. Anke
Spannenberg (LIKAT) and Dr. Alexander Villinger (Rostock
University) for crystallographic measurements and Dr. Nils
Rockstroh for assistance with the measurements of emission
spectra. Moreover, we would like to express our gratitude to the
LIKAT for excellent support.
[15]
[16]
a) J. B. Metternich, R. Gilmour, J. Am. Chem. Soc. 2016, 138,
1040-1045; b) T. Morack, J. B. Metternich, R. Gilmour, Org. Lett.
2018, 20, 1316-1319.
[17]
[18]
[19]
[20]
All compounds can be stored for >1 year without any evidence of
physical changes or alteration of their photochemical properties.
S. K. Singh, A. Das, Phys. Chem. Chem. Phys. 2015, 17, 9596-
9612.
Keywords: Organo Photoredox Catalysis • Non-Covalent
Interactions • Heteroarene N-oxides • Heterocycles
A. J. Neel, M. J. Hilton, M. S. Sigman, F. D. Toste, Nature 2017,
543, 637.
[1]
a) E. Romero, J. R. Gómez Castellanos, G. Gadda, M. W. Fraaije,
A. Mattevi, Chem. Rev. 2018, 118, 1742-1769; b) R. Teufel, V.
Agarwal, B. S. Moore, Curr. Opin. Chem. Biol. 2016, 31, 31-39; cR.
Teufel, Arch. Biochem. Biophys. 2017, 632, 20-27; d) V. Piano, B.
A. Palfey, A. Mattevi, Trends Biochem. Sci 2017, 42, 457-469.
M. Giese, M. Albrecht, K. Rissanen, Chem. Commun. 2016, 52,
1778-1795.
[21]
[22]
For detailed information, see S53.
M. Łukomska, A. J. Rybarczyk-Pirek, M. Jabłoński, M. Palusiak,
Phys. Chem. Chem. Phys. 2015, 17, 16375-16387.
This article is protected by copyright. All rights reserved.