S. Shimizu et al. / Tetrahedron Letters 53 (2012) 579–581
581
ming from their tetraazachlorine-like electronic structures. The
peripheral coordination site of 8 can potentially be used to con-
struct coordination oligomers without changing the spectroscopic
properties, and research along this direction is currently being
investigated.
Acknowledgments
This work was partly supported by a Grant-in-Aid for Scientific
Research (C) (No. 23550040) and (B) (No. 23350095) from Japan
Society for the Promotion of Science (JSPS) and a Grant-in-Aid for
Scientific Research on Innovative Areas (No. 20108007, ‘pi-Space’)
from the Ministry of Education, Culture, Sports, Science, and Tech-
nology (MEXT).
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
Figure 3. Partial molecular orbital diagrams of 7 (left) and 8 (right) (B3LYP/6–
31G(d) level).
1. Phthalocyanines: Properties and Applications; Leznoff, C. C., Lever, A. B. P., Eds.;
VC H: New York, 1989.
2. (a) The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.;
Academic Press: San Diego, 2000; (b)Handbook of Porphyrin Science; Kadish, K.
M., Smith, K. M., Guilard, R., Eds.; World Scientific Publishing: Singapore, 2010.
3. Fernandez-Lazaro, F.; Torres, T.; Hauschel, B.; Hanack, M. Chem. Rev. 1998, 98,
563.
Table 1
Selected transition energies and wave functions of 7 and 8 based on the TDDFT
method (B3LYP/6–31G(d))
4. (a) Shimizu, S.; Zhu, H.; Kobayashi, N. Chem. Eur. J. 2010, 16, 11151; (b) Zhu, H.;
Shimizu, S.; Kobayashi, N. Angew. Chem., Int. Ed. 2010, 49, 8000.
5. Shimizu, S.; Zhu, H.; Kobayashi, N. Chem. Commun. 2011, 47, 3072.
6. (a) Fukuda, T.; Makarova, E. A.; Luk’yanets, E. A.; Kobayashi, N. Chem. Eur. J.
2004, 10, 117; (b) Kobayashi, N.; Miwa, H.; Nemykin, V. N. J. Am. Chem. Soc.
2002, 124, 8007; (c) Kobayashi, N.; Fukuda, T. J. Am. Chem. Soc. 2002, 124, 8021;
(d) Kobayashi, N.; Mack, J.; Ishii, K.; Stillman, M. J. Inorg. Chem. 2002, 41, 5350;
(e) Miwa, H.; Ishii, K.; Kobayashi, N. Chem. Eur. J. 2004, 10, 4422.
7. (a) Linstead, R. P.; Whalley, M. J. Chem. Soc. 1952, 4839; (b) Fukuda, T.;
Kobayashi, N. Dalton Trans. 2008, 4685.
b
Compd Energy
(nm)
fa
Wave function
7
698
594
0.32 +0.594|173 172> +0.122|174 166> +. . .
0.24 +0.583|174 172> ꢀ0.122|173 166>
+0.142|175 172> +0.110|177 172> +. . .
0.32 +0.593|167 166> +0.105|168 161> +. . .
0.24 +0.588|168 166> +0.105|169 165>
+0.172|169 166> +. . .
8
700
597
8. Ege, G.; Beisiege, E. Synthesis 1974, 22.
a
Oscillator strength.
9. Baxter, P. N. W.; Connor, J. A.; Povey, D. C.; Wallis, J. D. J. Chem. Soc., Chem.
Commun. 1991, 1135.
b
Wave functions based on the eigenvectors predicted by TDDFT. The |172> and
|166> represent the HOMO of 7 and 8, respectively. Eigenvectors greater than 0.10
10. Selected data for 7. 1H NMR (600 MHz, CD2Cl2, 298 K): d = 8.45 (s, 2H;
a
-benzo),
8.38 (s, 2H;
a-benzo), 8.06 (s, 2H; a-benzo), 8.01 (d, J = 7.2 Hz, 2H; phenan
are included.
threne), 7.90 (s, 2H; phenanthrene), 7.58 (t, J = 7.8 Hz, 2H; phenanthrene), 7.36
(m, 8H; phenyloxy), 7.27 (d, J = 9.0 Hz, 4H; phenyloxy), 7.02 (m, 8H;
phenyloxy), 6.98 (d, J = 9.0 Hz, 4H; phenyloxy), 6.84 (d, J = 6.0 Hz, 2H;
phenanthrene), 1.33 (s, 18H; t-butyl), 1.32 (s, 18H; t-butyl), and 1.24 ppm (s,
ion has revealed the formation of a trimer system based on MALDI-
TOF-MS. Although coordination of the ruthenium ion reduces the
torsion angle of the bipyridyl moiety, significant changes in the
absorption spectra were not observed (see Supplementary data),
which can be rationalized from the fact that 7 and 8, which have
different torsion angles, still exhibit similar spectral features.
In summary, two novel core-modified phthalocyanine ana-
logues with a seven-membered ring unit were successfully synthe-
sized from aromatic dicarbonitriles bearing cyano groups at 1,
4-separate positions. In spite of the difference in the peripheral
ring units and the torsion angles of these moieties, all the com-
pounds exhibit similar spectral and electrochemical features stem-
18H; t-butyl); UV/vis (CHCl3): kmax [nm] (e) = 309 (43000), 353 (33000), 618
(41000), and 791 (47000 Mꢀ1 cmꢀ1); HR-ESI-TOF-MS: m/z (%): 1559.6566
(100); Calcd for C100H93N8O6Ni [M++H]; 1559.6572.
11. Selected data for 8: 1H NMR (600 MHz, CD2Cl2, 298 K): d = 8.83 (br s, 2H;
pyridyl), 8.37 (s, 2H;
a-benzo), 8.09 (s, 2H; a-benzo), 7.98 (s, 2H; a-benzo),
7.36 (d, J = 8.4 Hz, 4H; phenyloxy), 7.31 (m, 8H; phenyloxy), 7.22 (m, 4H;
pyridyl), 7.10 (d, J = 8.4 Hz, 4H; phenyloxy), 7.06 (d, J = 9.0 Hz, 4H; phenyloxy),
6.88 (d, J = 7.8 Hz, 4H; phenyloxy), 1.33 (s, 18H; t-butyl), 1.31 (s, 18H; t-butyl),
and 1.28 ppm (s, 18H; t-butyl); UV/vis (CHCl3): kmax [nm] (e) = 354 (37000),
623 (41000), and 791 (51000 Mꢀ1 cmꢀ1); HR-ESI-TOF-MS: m/z (%): 1559.6290
(100); Calcd for C96H90N10O6NiNa [M++Na]; 1559.6296.
12. Mack, J.; Stillman, M. J.; Kobayashi, N. Coord. Chem. Rev. 2007, 251, 429.
13. Okujima, T.; Mifuji, A.; Nakamura, J.; Yamada, H.; Uno, H.; Ono, N. Org. Lett.
2009, 11, 4088.