10.1002/anie.201708649
Angewandte Chemie International Edition
Significantly, four remaining peaks (86/68, 82/72, 68/86, 72/82
ppm) aligned in the same fashion as Figure 4c correspond to
cross-exchange between bromo- and chloro-species with
inversion of the P-configuration SP-19-Cl → RP-19-Br and SP-19-
Br → RP-19-Cl. Crucially, no cross-peaks were observed in the
main-diagonal fashion of Figure 4b, corresponding to retention of
P-configuration. Therefore we have unequivocally established
strongly predominant 23 inversion of the P-configuration in the
course of nucleophilic exchange processes in halophosphonium
species. Stereospecific inversion at the P-centre is in excellent
agreement with our recent findings on the fluxional dynamics of
tetrahedral phosphonium salts.9,19 To the best of our knowledge,
obtaining of such stereochemical information from an inseparable
mixture of rapidly interconverting reacting species is the first
example of a dynamic exchange experiment of this type. We note
that attribution of the lower-field 31P NMR peaks to the SP-isomers
of 19-Cl and 19-Br as shown is consistent with computed
chemical shifts.24 Should one of those assignments be incorrect,
the observed 2D EXSY pattern would mean that self-exchange
leads to inversion while cross-exchange leads to retention – an
entirely irrational situation. Work is underway on detailed analysis
of self- and cross-exchange processes in more complex double
P-stereogenic systems, for example DiPAMP halides (20-X2
Scheme 2a).
Keywords: nucleophilic substitution · NMR spectroscopy · P-
stereogenic compounds · phosphorus · configuration inversion ·
[1]
a) A. L. Thompson, D. J. Watkin, Tetrahedron: Asymmetry 2009, 712; b)
K. Lee, D. L. Silverio, S. Torker, D.W. Robbins, F. Haeffner, F.W. van der
Mei, A. H. Hoveyda, Nat. Chem. 2016, 768; c) J. Christoffers, A. Mann,
Angew. Chem. Int. Ed. 2001, 40, 4591; d) Y.-M. Cui, Y. Lin, L.W. Xu,
Coord. Chem. Rev. 2017, 37; e) O. I. Kolodiazhnyi, Russ. J. Gen. Chem.
2017, 425.
[2]
[3]
a) J. Labuta, S. Ishihara, T. Sikorsky, Z. Futera, A. Shundo, L. Hanykova,
J.V. Burda, K. Ariga, J. P. Hill, Nat. Commum. 2013, 3188; b) J.
Escorihuela, M. I. Burgette, S. L. Luis, Chem. Soc. Rev. 2013, 42, 5595;
c) B. Bieszczad, D. G. Gilheany, Angew. Chem. Int. Ed. 2017, 4272; d) P.
Walden, Chem. Ber. 1896, 133.
a) K. M. Pietrusiewicz, M. Zablocka, Chem. Rev. 1994, 94, 1375; b) M. J.
Johansson, N. C. Kann, Mini-Rev. Org. Chem 2004, 1, 233; c) D. S.
Glueck, Synlett 2007, 2627; d) A. Grabulosa, Ed.; P-Stereogenic Ligands
in Enantioselective Catalysis, RSC, Cambridge, 2011; e) O. I.
Kolodiazhnyi, Tetrahedron Asym. 2012, 23, 1.
[4]
[5]
Menthol as the auxiliary: a) O. Korpiun, R. A. Lewis, J. Chickos, K.
Mislow, J. Am. Chem. Soc. 1968, 90, 4842; b) O. Berger, J-L.
Montchamp, Angew. Chem. Int. Ed. 2013, 52, 11377.
Ephedrine as the auxiliary: a) C. Darcel, J. Uziel, S. Jugé in: Phosphorus
Ligands in Asymmetric Catalysis (Ed.: A. Börner), Wiley-VCH, Weinheim,
2008, vol. 3, 1211; b) J. V. Carey, M. D. Barker, J. M. Brown, M. J. H.
Russell, J. Chem. Soc. Perkin Trans. 1 1993, 831; c) F. Chaux et al.
Compt. Rend. Chim. 2010, 13, 1213; d) T. Oshiki, T. Imamoto, J. Am.
Chem. Soc. 1992, 114, 3975; e) T. León, A. Riera, X. Verdaguer, J. Am.
Chem. Soc. 2011, 133, 5740.
To conclude, by introducing two different halogens in the
dynamic exchange of XPS species we were able to extend the
measurement of reaction activation barrier to essentially any
phosphonium structure and construct a reactivity scale for the
process. Notably, for XPS containing ordinary hydrocarbon
groups, the barriers are around 11 kcal/mol, rising rapidly with
increased steric bulk in agreement with our earlier findings.9
Secondly, we have used, to our knowledge for the first time for a
fast nucleophilic reaction, low temperature exchange experiments
on the millisecond scale to build an informative Hammett plot.
Both findings enable us to predict the reactivity of a wide variety
of XPS and are not, in principle, limited to the halogen exchange
process. Finally, by rigorously analysing the dynamic pattern of
multiple pathway exchange systems, we successfully established
the stereochemistry of the exchange process. In excellent
agreement with computations strongly favouring the di-axial
orientation of halogens in the transition state, the attack of
nucleophilic halide anion results in an inversion of the P-
configuration. This latter result is significant for Main Group
element chemistry in general as it underlines the deep similarity
between carbon and non-carbon chemistry.
[6]
[7]
Chiral aminophenol as the auxiliary: Z. S. Han et al. J. Am. Chem. Soc.
2013, 135, 2474.
a) K. V. Rajendran, L. Kennedy, D. G. Gilheany, Eur. J. Org. Chem. 2010,
5642; b) E. Bergin, C. T. O’Connor, S. B. Robinson, E. M. McGarrigle, C.
P. O’Mahony, D. G. Gilheany, J. Am. Chem. Soc. 2007, 129, 9566; c) G.
King, E. Bergin, H. Müller-Bunz. D. G. Gilheany, Acta. Cryst 2007, E63,
O3278; d) K. V. Rajendran, D. G. Gilheany, Chem. Commun. 2012, 48,
10040; e) S. Al Sulaimi, K.V. Rajendran, D.G. Gilheany Eur. J. Org.
Chem. 2015, 5959.
[8]
[9]
K. Nikitin, K.Rajendran, H. Müller-Bunz, D.G. Gilheany, Angew. Chem.
Int. Ed. 2014, 126, 1906.
E. Jennings, K. Nikitin, Y. Ortin, D.G. Gilheany, J. Am. Chem. Soc. 2014,
136, 16217.
[10] a) I. Fernandez, G. Frenking, E. Uggerud, Chem. Eur. J. 2009, 2166; b) I.
Dostrovsky, E.D. Hughes, E.D., C.K. Ingold, J. Chem. Soc. 1946, 173; c)
P.B.D. de la Mare, L. Fowden, E.D. Hughes, C.K. Ingold, D.H. Mackie, J.
Chem. Soc. 1955, 3200; d) I. Fernandez, F. M. Bickelhaupt, Chem. Soc.
Rev. 2014, 4953.
[11] a) M.S. Korobov, G.S. Borodkin, N.I. Orisenko, T.A. Ryskina, L.E.
Nivorozhkin, V.I. Minkin, J. Mol. Structure, 1989, 200, 61; b) M.
McGlinchey, Symmetry 2014, 6, 622; c) M. Oki, Pure Appl. Chem. 1989,
699; d) L.P. Olekhovich, Z.N. Budarina, A.V. Lesin, S.V. Kurbatov, G.S.
Borodkin, V.I. Minkin, Mend. Commun. 1994, 162.
Experimental Section
[12] a) M. A. Van Bochove, F. M. Bickelhaupt, Eur. J. Org. Chem. 2008, 649;
b) M. A. Van Bochove, M. Swart, F.M. Bickelhaupt, ChemPhysChem
2007, 2452; c) H. M. Buck, Int. J. Quant. Chem. 2010, 110, 1412–1424.
[13] K. Nikitin, H. Muller-Bunz, D. G. Gilheany, Chem Commun. 2013, 49,
1434.
Experimental procedures for dynamic measurements and characterisation
of individual compounds are given in the Electronic Supporting Information
section.
[14] Structure of [1Cl]+ salts: a) S. M. Godfrey, C. A. McAuliffe, R. G.
Pritchard, J. M. Sheffield, Chem. Commun. 1996, 2521; b) S. J. Hwang,
D. C. Powers, A. G. Maherab, D. G. Nocera, Chem. Sci. 2015, 6, 917.
[15] Ignoring possible anion-exchange in the outer sphere.
Acknowledgements
This work was supported by Science Foundation Ireland chiefly
through Principal Investigator Grant 09/IN.1/B2627 and partially
through the SFI funded Solid State Pharmaceutical Centre
12/RC/2275 Grants to DGG. We are also grateful to UCD Centre
for Synthesis and Chemical Biology for access to their extensive
analysis facilities.
[16] a) H. Shanan-Atidi, I. H. Bar-Eli, J. Phys. Chem. 1970, 74, 961; b)
barriers of forward and reverse reaction: 11.0 and 11.3 kcal/mol.
[17] D. J. Carr, J. S. Kudavalli, K. S. Dunne, H.Müller-Bunz, D. G. Gilheany, J.
Org. Chem. 2013, 10500.
[18] The concentration of pentacoordinate covalent species can safely be
ignored: the respective NMR signals are not observed in chlorinated
solvents in good agreement with DFT-level computations (see ref. 9)
indicating a 10-20 kcal/mol energy penalty.
Received:
Published online on:
4
This article is protected by copyright. All rights reserved.