Yohan Park et al.
COMMUNICATIONS
1497, 1454, 1403, 1368, 1254, 1160, 1032, 849, 703 cmÀ1; HR-
MS (FAB): m/z=290.1753, calcd. for [C17H24NO3]+:
290.1756; [a]2D3: +70.94 (c 0.43, CHCl3).
[3] a) J. M. Flaniken, C. J. Collins, M. Lanz, B. Singaram,
Org. Lett. 1999, 1, 799; b) K. Takasu, N. Nishida, A. To-
mimura, M. Ihara, J. Org. Chem. 2005, 70, 3957; c) Y.
Uenoyama, T. Fukuyama, I. Ryu, Org. Lett. 2007, 9,
935.
N1-Benzhydryl-2-piperidone-3-carboxylic acid tert-butyl
ester (10b): White solid; yield: 88%. The enantioselectivity
was determined by chiral HPLC analysis (DIACEL Chiral-
[4] T. A. Moss, D. R. Fenwick, D. J. Dixon, J. Am. Chem.
Soc. 2008, 130, 10076.
cel
OD-H,
hexanes:2-propanol=95:5,
flow
rate=
1.0 mLminÀ1, 238C, l=254 nm): retention times S (major)
5.2 min, R (minor) 10.1 min, 98% ee. 1H NMR (300 MHz,
CDCl3): d=7.40~7.27 (m, 14H), 7.09~7.06 (m, 2H), 3.39
(dd, J1 =244.95 Hz, J2 =13.35 Hz, 2H), 3.03~2.96 (m, 1H),
2.61~2.53 (m, 1H), 2.09~1.82 (m, 4H), 1.44 (s, 9H);
13C NMR (75 MHz, CDCl3): d=172.38, 168.65, 138.49,
138.16, 136.98, 130.72, 129.14, 128.25, 128.09, 128.04, 127.97,
127.21, 127.04, 126.33, 81.59, 60.09, 55.78, 43.76, 41.25, 29.56,
27.81, 20.12; IR (KBr): n=2935, 1733, 1637, 1495, 1454,
1367, 1293, 1253, 1149, 1032, 850, 751, 702 cmÀ1; HR-MS
(FAB): m/z=456.2544, calcd. for [C30H34NO3]+: 456.2539;
m.p 898C; [a]2D3: +71.61 (c 0.86, CHCl3).
CCDC 837890 and CCDC 837891 contain the supplemen-
tary crystallographic data for compounds 5d and 10d, re-
spectively. These data can be obtained free of charge from
The Cambridge Crystallographic Data Centre via
[5] T. A. Moss, B. Alonso, D. R. Fenwick, D. J. Dixon,
Angew. Chem. 2010, 122, 578; Angew. Chem. Int. Ed.
2010, 49, 568.
[6] M. Bella, S. Kobbelgaard, K. A. Jørgensen, J. Am.
Chem. Soc. 2005, 127, 3670.
[7] For recent reviews on the phase-transfer catalysis, see:
a) K. Maruoka, T. Ooi, Chem. Rev. 2003, 103, 3013;
b) M. J. OꢂDonnell, Acc. Chem. Res. 2004, 37, 506; c) B.
Lygo, B. I. Andrews, Acc. Chem. Res. 2004, 37, 518;
d) T. Hashimoto, K. Maruoka, Chem. Rev. 2007, 107,
5656; e) S.-s. Jew, H.-g. Park, Chem. Commun. 2009,
7090.
[8] For our recent reports on the development of new sub-
strates for enantioselective phase-transfer catalytic re-
actions, see: a) S.-s. Jew, B.-S. Jeong, M.-S. Yoo, H.
Huh, H.-g. Park, Chem. Commun. 2001, 1244; b) H.-g.
Park, B.-S. Jeong, M.-S. Yoo, M.-k. Park, H. Huh, S.-s.
Jew, Tetrahedron Lett. 2001, 42, 4645; c) H.-g. Park, B.-
S. Jeong, M.-S. Yoo, J.-H. Lee, M.-k. Park, Y.-J. Lee,
M.-J. Kim, S.-s. Jew, Angew. Chem. 2002, 114, 3162;
Angew. Chem. Int. Ed. 2002, 41, 3036; d) S.-s. Jew, M.-
S. Yoo, B.-S. Jeong, I. Y. Park, H.-g. Park, Org. Lett.
2002, 4, 4245; e) M.-S. Yoo, B.-S. Jeong, J.-H. Lee, H.-g.
Park, S.-s. Jew, Org. Lett. 2005, 7, 1129; f) S.-s. Jew, Y.-J.
Lee, J. Lee, M. J. Kang, B.-S. Jeong, J.-H. Lee, M.-S.
Yoo, M.-J. Kim, S.-h. Choi, J.-M. Ku, H.-g. Park,
Angew. Chem. 2004, 116, 2436; Angew. Chem. Int. Ed.
2004, 43, 2382; g) Y.-J. Lee, J. Lee, M. J. Kim, T.-S.
Kim, H.-g. Park, S.-s. Jew, Org. Lett. 2005, 7, 1557;
h) Y.-J. Lee, J. Lee, M. J. Kim, B.-S. Jeong, J. H. Lee, T.-
S. Kim, J.-M. Koo, S.-s. Jew, H.-g. Park, Org. Lett. 2005,
7, 3207; i) T.-S. Kim, Y.-J. Lee, B.-S. Jeong, H.-g. Park,
S.-s. Jew, J. Org. Chem. 2006, 71, 8276; j) T.-S. Kim, Y.-
J. Lee, K. Lee, B.-S. Jeong, H.-g. Park, S.-s. Jew, Synlett
2009, 671; k) Y. Park, S. Kang, Y. J. Lee, T.-S. Kim, B.-
S. Jeong, H.-g. Park, S.-s. Jew, Org. Lett. 2009, 11, 3738;
l) M.-h. Kim, S.-h. Choi, Y.-J. Lee, J. Lee, K. Nahm, B.-
S. Jeong, H.-g. Park, S.-s. Jew, Chem. Commun. 2009,
782; m) S. Hong, J. Lee, M. Kim, Y. Park, C. Park, M.-
h. Kim, S.-s. Jew, H.-g. Park, J. Am. Chem. Soc. 2011,
133, 4924.
Acknowledgements
This work was supported by grants of the Mid-career Re-
searcher Support Programs of National Research Foundation
of Korea (2009-0078814) and the Korea Healthcare technolo-
gy R&D Project, Ministry for Health, Welfare & Family Af-
fairs, Republic of Korea (A092006).
References
[1] a) R. H. F. Manske. The Alkaloids. Chemistry and Phys-
iology, Volume VIII, New York, Academic Press, 1965,
p 673; b) D. F. Rhoades, Evolution of Plant Chemical
Defense against Herbivores, in: Herbivores: Their Inter-
action with Secondary Plant Metabolites, (Eds.: G. A.
Rosenthal, D. H. Janzen), New York, Academic Press,
1979, p 41; c) A. Brossi, The Alkaloids: Chemistry and
Pharmacology, Volume 35, New York, Academic Press,
1989, p 261; d) G. A. Cordell, The Alkaloids: Chemistry
and Biology, Volume 56, Amsterdam, Elsevier, 2001,
p 8.
[2] a) M. Keppens, N. De Kimpe, J. Org. Chem. 1995, 60,
3916; b) K. Mori, Y. Takagi, Tetrahedron Lett. 2000, 41,
6623; c) B. M. Trost, M. K. Brennan, Org. Lett. 2006, 8,
2027; d) T. J. Harrison, B. O. Patrick, G. R. Dake, Org.
Lett. 2007, 9, 367; e) P. Shanmugam, B. Viswambharan,
S. Madhavan, Org. Lett. 2007, 9, 4095; f) A.-C. Callier-
Dublanchet, J. Cassayre, F. Gagosz, B. Quiclet-Sire,
L. A. Sharp, S. Z. Zard, Tetrahedron 2008, 64, 4803;
g) J. Magolan, C. A. Carson, M. A. Kerr, Org. Lett.
2008, 10, 1437.
[9] M. J. OꢂDonnell, W. D. Bennett, S. Wu, J. Am. Chem.
Soc. 1989, 111, 2353.
[10] a) E. J. Corey, F. Xu, M. C. Noe, J. Am. Chem. Soc.
1997, 119, 12414; b) S.-s. Jew, M.-S. Yoo, B.-S. Jeong,
H.-g. Park, Org. Lett. 2002, 4, 4245; c) T. Ooi, M.
Kameda, K. Maruoka, J. Am. Chem. Soc. 2003; 125,
5139; d) M. Kitamura, S. Shirakawa, K. Maruoka,
Angew. Chem. 2005, 117, 1573; Angew. Chem. Int. Ed.
2005, 44, 1549.
3318
ꢀ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2011, 353, 3313 – 3318