Journal of the American Chemical Society
Article
acrylate polymerization,10 evolves the criteria for a privileged
monomer. While a retardation of polymerization by slower
insertion into the α-X substituted alkyl formed by incorporation
of polar monomer as well as by chelating κ-X coordination of
comonomer-derived repeat units appear to be general
phenomena of such copolymerizations, the weak coordination
of the ester group of acrylate monomer ultimately is responsible
for the accessability of ethylene copolymers with high
incorporations of the polar comonomer.
In the context of these considerations, it is notable that to
date no specific irreversible deactivation reactions of neutral
Pd(II) polymerization catalysts have been reported for any
polar vinyl comonomer, although they likely occur in some
cases.
Chem. Soc. 2009, 131, 14606−14607. (f) Bouilhac, C.; Runzi, T.;
̈
Mecking, S. Macromolecules 2010, 43, 3589−3590. (g) Runzi, T.;
̈
Guironnet, D.; Gottker-Schnetmann, I.; Mecking, S. J. Am. Chem. Soc.
̈
2010, 132, 16623−16630. (h) Runzi, T.; Frohlich, D.; Mecking, S. J.
̈
̈
Am. Chem. Soc. 2010, 132, 17690−17691. (i) Daigle, J.-C.; Piche, L.;
Claverie, J. P. Macromolecules 2011, 44, 1760−1762.
(7) Olefin−CO copolymerizations: (a) Drent, E.; van Dijk, R.; van
Ginkel, R.; van Oort, B.; Pugh, R. I. Chem. Commun. 2002, 964−965.
(b) Hearley, A. K.; Nowack, R. J.; Rieger, B. Organometallics 2005, 24,
2755−2763. (c) Kochi, T.; Nakamura, A.; Ida, H.; Nozaki, K. J. Am.
Chem. Soc. 2007, 129, 7770−7771. (d) Nakamura, A.; Munakata, K.;
Ito, S.; Kochi, T.; Chung, L. W.; Morokuma, K.; Nozaki, K. J. Am.
Chem. Soc. 2011, 133, 6761−6779.
(8) Drent, E.; van Dijk, R.; van Ginkel, R.; van Oort, B.; Pugh, R. I.
Chem. Commun. 2002, 744−745.
(9) (a) Vela, J.; Lief, G. R.; Shen, Z.; Jordan, R. F. Organometallics
2007, 26, 6624−6635. (b) Skupov, K. M.; Marella, P. R.; Simard, M.;
Yap, G. P. A; Allen, N.; Conner, D.; Goddall, B. L.; Claverie, J. P.
Macromol. Rapid Commun. 2007, 28, 2033−2038. (c) Borkar, S.;
Newsham, D. K.; Sen, A. Organometallics 2008, 27, 3331−3334.
(d) Noda, S.; Nakamura, A.; Kochi, T.; Chung, L. W.; Morokuma, K.;
Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14088−14100. (e) Guironnet,
The aforementioned limitations being understood, they
should not obscure the fact that this insertion copolymerization
provides a useful access to amide-substituted polyethylenes,
which is not sensitive to the nature of the amide substitution
pattern.
ASSOCIATED CONTENT
■
D.; Roesle, P.; Runzi, T.; Gottker-Schnetmann, I.; Mecking, S. J. Am.
̈
̈
S
* Supporting Information
Chem. Soc. 2009, 131, 422−423. (f) Wucher, P.; Caporaso, L.; Roesle,
P.; Ragone, F.; Cavallo, L.; Mecking, S.; Gottker-Schnetmann, I. Proc.
̈
Supplemental tables and figures, general experimental proce-
dures, synthesis, additional NMR spectra, polymerization data,
and crystal structure of 2-MeOD. This material is available free
Natl. Acad. Sci. U. S. A. 2011, 108, 8955−8959.
(10) Guironnet, D.; Caporaso, L.; Neuwald, B.; Gottker-Schnetmann,
̈
I.; Cavallo, L.; Mecking, S. J. Am. Chem. Soc. 2010, 132, 4418−4426.
(11) Related stoichiometric studies of acrylate insertion in Pd(II)
complexes: (a) Braunstein, P.; Frison, C.; Morise, X. Angew. Chem., Int.
Ed. 2000, 39, 2867−2870. (b) Agostinho, M.; Braunstein, P. Chem.
Commun. 2007, 58−60.
AUTHOR INFORMATION
■
Corresponding Author
(12) (a) Marques, M. M.; Fernandes, S.; Correia, S. G.; Ascenso, J.
R.; Caroco̧ , S.; Gomes, P. T.; Mano, J.; Pereira, S. G.; Nunes, T.; Dias,
A. R.; Rausch, M. D.; Chien, J. C. W. Macromol. Chem. Phys. 2000,
201, 2464−2468. (b) Fernandes, S.; Ascenso, J. R.; Gomes, P. T.;
Costa, S. I.; Silva, L. C.; Chien, J. C. W.; Marques, M. M. Polym. Int.
2005, 54, 249−255.
(13) Also cf. Conner, D. M.; Goodall, B. L.; McIntosh, L. H. U.S. Pat.
7524905 B2, 2009 for further polymerizations with these catalysts to
ethylene copolymers with 0.5 mol % N-vinylphthalimide incorpo-
ration.
(14) The concentrationof ethylene in toluene (85 °C) at 90 and 200
psi is 0.28 and0.68 mol L−1, respectively: Skupov, K. M.; Hobbs, J.;
Marella, P.; Conner, D.; Golisz, S.; Goodall, B. L.; Claverie, J. P.
Macromolecules 2009, 42, 6953−6963.
(15) Internal olefins were accounted for as ethylene-derived end
groups.
(16) The frequencies ofcarbonyl stretching bands of acetamide
(AcA), MAcA, and DMAcA decreasewith increasing degree of
substitution, indicating a higher negativepartial charge on the oxygen
atom: Gerrard, W.; Lappert, M. F.; Pyszora, H.; Wallis, J. W. J. Chem.
Soc. 1960, 2144−2151 .However, the overall coordination strength
appears to be dominatedby the steric bulk of the N-substituents, which
disfavorscoordination, as concluded from the inhibition studies.
(17) Nozaki, K.; Kusumoto, S.; Noda, S.; Kochi, T.; Chung, L. W.;
Morokuma, K. J. Am. Chem. Soc. 2010, 132, 16030−16042.
(18) That the trends differ somewhat in detail may be related to the
fact that the relative binding studies employ Pd−Me species, whereas
in polymerization, relative binding in the bulkier Pd−alkyls (alkyl =
growing chain) is relevant. Also, although the temperature dependence
of an equilibrium A + B ⇄ C + D should be expected to be limited,
the different temperatures of the NMR studies (25 °C) and the
polymerization studies (80 °C) can contribute.
ACKNOWLEDGMENTS
■
Financial support by the DFG (Me1388/10) is gratefully
acknowledged. The authors thank Lars Bolk for GPC, Boris
Neuwald for ESI-MS measurements, Anke Friemel for
recording VT 13C NMR spectra, and Thomas Runzi for
̈
performing various polymerizations in presence of additives.
Support by Inigo Gottker-Schnetmann in the determination of
̈
the crystal structure of 2-MeOD is acknowledged.
REFERENCES
■
(1) Mulhaupt, R. Macromol. Chem. Phys. 2003, 204, 289−327.
̈
(2) (a) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. Rev. 2000,
100, 1169−1203. (b) Gibson, V. C.; Spitzmesser, S. K. Chem. Rev.
2003, 103, 283−316. (c) Mecking, S. Coord. Chem. Rev. 2000, 203,
325−351. (d) Mecking, S. Angew. Chem., Int. Ed. 2001, 40, 534−540.
(e) Guan, Z. Chem.Eur. J. 2002, 8, 3086−3092. (f) Domski, G. J.;
Rose, J. M.; Coates, G. M.; Bolig, A. D.; Brookhart, M. Prog. Polym. Sci.
2007, 32, 30−92. (g) Chen, E. Y.-X. Chem. Rev. 2009, 109, 5157−
5214. (h) Nakamura, A.; Ito, S.; Nozaki, K. Chem. Rev. 2009, 109,
5215−5244.
(3) (a) Johnson, L. K.; Mecking, S.; Brookhart, M. J. Am. Chem. Soc.
1996, 118, 267−268. (b) Mecking, S.; Johnson, L. K.; Wang, L.;
Brookhart, M. J. Am. Chem. Soc. 1998, 120, 888−899.
(4) Foley, S. R.; Stockland, R. A.; Shen, H.; Jordan, R. F. J. Am. Chem.
Soc. 2003, 125, 4350−4361.
(5) Berkefeld, A.; Mecking, S. Angew. Chem., Int. Ed. 2008, 47, 2538−
2542.
(6) (a) Luo, S.; Vela, J.; Lief, G. R.; Jordan, R. F. J. Am. Chem. Soc.
2007, 129, 8946−8947. (b) Kochi, T.; Noda, S.; Yoshimura, K.;
Nozaki, K. J. Am. Chem. Soc. 2007, 129, 8948−8949. (c) Weng, W.;
Shen, Z.; Jordan, R. F. J. Am. Chem. Soc. 2007, 129, 15450−15451.
(d) Skupov, K. M.; Piche, L.; Claverie, J. P. Macromolecules 2008, 41,
2309−2310. (e) Ito, S.; Munakata, K.; Nakamura, A.; Nozaki, K. J. Am.
(19) Several insertion products were formed in the case of DMAA
and NIPAM. The decrease of the Pd−Me resonance was monitored in
all cases, and the obtained rate constants represent overall insertion
rates.
1017
dx.doi.org/10.1021/ja207110u | J. Am. Chem. Soc. 2012, 134, 1010−1018