M.N. Patel et al. / Journal of Organometallic Chemistry 701 (2012) 8e16
15
Table 5
strongly than rest of the complexes. The electronic absorption
data are in good accordance with viscosity study. The DNA
cleavage study of pUC19 shows that all complexes have high
cleavage ability than metal salt and drug. Upon determination of
antioxidant activity in NBT/NADH/PMS system, complex 3 shows
the highest scavenging ability for oxygen radical. The preliminary
studies encourage for carrying out further in vivo experiments
and seeming helpful in generating database for preparation of
effective DNA probe.
Complex mediated DNA cleavage data by gel electrophoresis.
Lane No.
Compound
Form I (SC)
Form II (OC)
Form III (LC)
1
2
3
4
5
6
7
8
9
Control
CuCl2$2H2O
Norfloxacin
91
87
63
27
25
20
28
33
30
35
9
13
22
56
59
62
53
52
51
49
e
e
15
17
16
18
19
15
19
16
[Cu(NFL)(L1)Cl]
[Cu(NFL)(L2)Cl]
[Cu(NFL)(L3)Cl]
[Cu(NFL)(L4)Cl]
[Cu(NFL)(L5)Cl]
[Cu(NFL)(L6)Cl]
[Cu(NFL)(L7)Cl]
Conflict of interest
The authors report no conflicts of interest. The authors alone are
responsible for the content and writing of the paper.
10
Acknowledgements
The authors thank the Head, Department of Chemistry, Sardar
Patel University, India, for making it convenient to work in
laboratory.
Appendix. Supplementary Data
Supplementary data related to this article can be found online at
References
[1] W.K. Pogozelski, T.D. Tullius, Chem. Rev. 98 (1998) 1089e1108.
[2] V.G. Vaidyanathan, B.U. Nair, Eur. J. Inorg. Chem. 9 (2004) 1840e1846.
[3] N. Saglam, A. Colak, S. Dulger, S. Guner, S. Karabocek, A.O. elduz, Biometals 15
(2002) 357e365.
Fig. 9. Mechanism for SOD-like activity performed using the NBT/NADH/PMS system.
[4] J. Wang, L. Shuai, X. Xiao, Y. Zeng, Z. Li, T.M. Inoue, J. Inorg. Biochem. 99 (2005)
883e885.
[5] M. Scarpellini, A. Neves, R. Horner, A.J. Bortoluzzi, B. Szpoganics, C. Zucco,
R.A. Nome Silva, V. Drago, A.S. Mangrich, W.A. Ortiz, W.A. Passos, M.C. de
Oliveira, H. Terenzi, Inorg. Chem. 42 (2003) 8353e8365.
[6] S. Dhar, D. Senapati, P.K. Das, P. Chattopadhyay, M. Nethaji, A.R. Chakravarty,
J. Am. Chem. Soc. 125 (2003) 12118e12124.
[7] P.M. May, D.R. Williams, in: H. Sigel (Ed.), Metal Ions in Biological Systems, vol.
12, Marcel Dekker, New York, 1981.
[8] T. Miura, A. Horii, H. Mototani, H. Takeuchi, Biochemistry 38 (1999)
11560e11569.
[9] M. Gellert, K. Mizuuchi, M.H. O’Dea, H.A. Nash, Proc. Natl. Acad. Sci. U.S.A. 73
(1976) 3872e3876.
[10] M. Gellert, K. Mizuuchi, M.H. O’Dea, T. Itoh, J. Tomizawa, Proc. Natl. Acad. Sci.
U.S.A. 74 (1977) 4772e4776.
[11] M. Gillert, Ann. Rev. Biochem. 50 (1981) 879e910.
[12] N.R. Cozarelli, Science 207 (1980) 953e960.
[13] G. Palu, S. Valisena, G. Ciarrocchi, Proc. Natl. Acad. Sci. U.S.A. 89 (1992)
9671e9675.
3.6. Enzymatic behavior
The NADH/PMS/NBT system was used to generate the super-
oxide radical artificially in order to check SOD-like behavior of the
complexes. The percentage inhibition of formazan formation at
various concentrations of the complexes as a function of time was
determined by measuring the absorbance at 560 nm and this was
plotted to give a straight line obeying the equation Y ¼ mX þ C
(Fig. 7). With an increase in the concentration of tested complexes
a decrease in the slope (m) was observed. The percentage inhibition
of the reduction rate of nitro blue tetrazolium (NBT) was plotted
against the concentration of the complex to obtain the IC50 value
(Fig. 8). The compounds exhibited SOD-like activity at biological pH
[14] D.T.W. Chu, P.B. Fernandes, Advances in Drug Research, vol. 21, Academic
Press, London, 1991, pp. 39e144.
with their IC50 values ranging from 0.552 to 1.276 mM (Table 4). The
best IC50 value among the synthesised complexes was observed for
complex 3. The proposed mechanism for generation of ROS and its
dismutation is shown in Fig. 9 [50]. Fee and Huheey proposed rapid
interconversion between Cu(II) and Cu(I) via electron transfer
between copper and reactive oxygen radical anion following the
principle of electroneutrality [51].
[15] J.E.F. Reynolds, The Extra Pharmacopeia, thirty ed. The Pharmaceutical Press,
London, 1993, pp. 145e147.
[16] Y. Liang-Cai, T. Zi-Long, Y. Pin-Gui, L. Sheng-Li, L. Xia, J. Coord. Chem. 61 (2008)
2961e2967.
[17] T.D. Oberley, L.W. Oberley, B. Pal-Yu (Eds.), Free Radicals in Aging, CRC Press,
Florida, 1993, pp. 247e268.
[18] L.W. Oberly, G.R. Buettner, Cancer Res. 39 (1979) 1141e1149.
[19] L.W. Oberley, Biomed. Pharmacother. 59 (2005) 143e148.
[20] K. Mitrunen, P. Sillanpaa, V. Kataja, M. Eskelinen, V. Kosma, S. Benhamou,
M. Uusitupa, A. Hirvonen, Carcinogenesis 22 (2001) 827e829.
[21] L. Naso, A.C. Gonzalez-Baro, L. Lezama, T. Rojo, P.A.M. Williams, E.G. Ferrer,
J. Inorg. Biochem. 103 (2009) 219e226.
4. Conclusions
[22] T. Suksrichavalit, S. Prachayasittikul, C. Nantasenamat, C. Isarankura-Na-
Ayudhya, V. Prachayasittikul, Eur. J. Med. Chem. 44 (2009) 3259e3265.
[23] A.I. Vogel, Textbook of Quantitative Inorganic Analysis, fourth ed. ELBS and
Longman, London, 1978.
Herein this work, we have synthesized seven Cu(II) metal-
lointercalators with various terpyridines and norfloxacin. While
comparing the data of MIC for complexes and drug, complexes 1,
2, 3, 4 and 6 showed good results for all microorganisms, among
which complex 3 fall out with highest potency. Reason for
increase in potency of drug is its coordination with metal ion.
From the viscosity data of complexes and classical intercalator
ethidium bromide; it is clear that all complex show classical
intercalative mode of binding, where complex 3 binds more
[24] G.S. Hanan, J. Wang, Synlett (2005) 1251e1254.
[25] S. Mudasir, N. Yoshioka, H. Inoue, J. Inorg. Biochem. 77 (1999) 239e247.
[26] S. Shi, J. Liu, J. Li, K. Zheng, X. Huang, C. Tan, L. Chen, L. Ji, J. Inorg. Biochem. 100
(2006) 385e395.
[27] A. Wolfe Jr., G.H. Shimer, T. Meehan, Biochem. 26 (1987) 6392e6396.
[28] H. Ihmels, D. Otto, Top. Curr. Chem. 258 (2005) 161e204.
[29] S. Basili, A. Bergen, F. Dall’Acqua, A. Faccio, A. Granzhan, H. Ihmels, S. Moro,
G. Viola, Biochem. 46 (2007) 12721e12736.