C.R. Bhattacharjee et al. / Polyhedron 33 (2012) 417–424
423
[5] J. Arias, M. Bardaji, P. Espinet, C.L. Folcia, J. Ortega, J. Etxebarria, Inorg. Chem. 48
(2009) 6205.
[6] E. Terazzi, S. Torelli, G. Bernardinelli, J.-P. Rivera, J.-M. Benech, C. Bourgogne, B.
Donnio, D. Guillon, D. Imbert, J.-C.G. Bunzli, A. Pinto, D. Jeannerat, C. Piguet, J.
Am. Chem. Soc. 127 (2005) 888.
[7] M. Ghedini, D. Pucci, A. Crispini, A. Bellusci, M. La Deda, I. Aiello, T. Pugliese,
Inorg. Chem. Commun. 10 (2007) 243.
[8] F. Camerel, R. Ziessel, B. Donnio, C. Bourgogne, D. Guillon, M. Schmutz, C.
Iacovita, J.-P. Bucher, Angew. Chem., Int. Ed. 46 (2007) 2659.
[9] V.N. Kozhevnikov, B. Donnio, D.W. Bruce, Angew. Chem., Int. Ed. 47 (2008)
6286.
[10] D. Pucci, G. Barberio, A. Bellusci, A. Crispini, M. La Deda, M. Ghedini, E.I. Szerb,
Eur. J. Inorg. Chem. (2005) 2457.
[11] C.R. Bhattacharjee, G. Das, P. Mondal, N.V.S. Rao, Polyhedron 29 (2010) 3089.
[12] K. Binnemans, J. Mater. Chem. 19 (2009) 448.
[13] C.R. Bhattacharjee, G. Das, P. Mondal, S.K. Prasad, D.S.S. Rao, Eur. J. Inorg. Chem.
(2011) 1418.
[14] C.R. Bhattacharjee, G. Das, P. Goswami, P. Mondal, S.K. Prasad, D.S.S. Rao,
Polyhedron 30 (2011) 1040.
[15] C.R. Bhattacharjee, G. Das, P. Mondal, Eur. J. Inorg. Chem. (2011) 5390.
[16] P.G. Cozzi, L.S. Dolci, A. Garelli, M. Montalti, L. Prodi, N. Zaccheroni, New J.
Chem. 27 (2003) 692.
Fig. 10. HOMO energy diagram of Ni-16opd.
[17] P.G. Cozzi, Chem. Soc. Rev. 33 (2004) 410.
[18] C. Gennari, U. Piarulli, Chem. Rev. 103 (2003) 3071.
[19] R.I. Kureshy, I. Ahmad, N.H. Khan, S.H.R. Abdi, K. Pathak, J. Catal. 238 (2006)
134.
Table 4
DFT data of the complexes. Bond lengths are reported in Å and bond angles in degrees.
[20] V. Aubert, V. Guerchais, E. Ishow, K.T. Hoang, I. Ledoux, K. Nakatani, L.H. Bozec,
Angew. Chem., Int. Ed. 47 (2008) 577.
Structure parameter
Ni-opd
Ni-mpd
Ni-npd
Ni–O(1)
Ni–O(2)
Ni–N(1)
Ni–N(2)
O(1)–Ni–O(2)
N(1)–Ni–N(2)
N(1)–Ni–O(2)
O(1)–Ni–N(1)
O(1)–Ni–N(2)
N(2)–Ni–O(2)
HOMO in eV
LUMO in eV
1.929
1.930
1.999
1.999
94.67
83.16
165.14
92.76
165.29
92.63
ꢂ3.584
ꢂ2.612
0.972
2.058
19.3
1.930
1.931
1.999
2.001
94.58
83.20
165.65
92.71
165.45
92.58
ꢂ3.542
ꢂ2.567
0.975
2.051
18.8
1.921
1.919
1.989
1.983
92.84
83.56
167.55
92.72
167.98
93.09
ꢂ3.920
ꢂ3.371
0.549
3.643
16.2
[21] B.J. Coe, in: J.A. McCleverty, T.J. Meyer (Eds.), Comprehensive Coordination
Chemistry II, vol. 9, Elsevier Pergamon, Oxford, 2004, pp. 621–687.
[22] J. Chiffre, F. Averseng, G.G.A. Balavoine, J.-C. Daran, G. Iftime, P.G. Lacroix, E.
Manoury, K. Nakatani, Eur. J. Inorg. Chem. (2001) 2221.
[23] I. Sasaki, L. Vender, A.S. Saquet, P.G. Lacroix, Eur. J. Inorg. Chem. (2006) 3294.
[24] I. Aiello, M. Ghedini, F. Neve, D. Pucci, Chem. Mater. 9 (1997) 2107.
[25] A.K. Singh, S. Kumari, K.R. Kumar, B. Sridhar, T.R. Rao, Polyhedron 27 (2008)
181.
[26] Y. Abe, A. Iyoda, K. Seto, A. Moriguchi, T. Tanase, H. Yokoyama, Eur. J. Inorg.
Chem. (2008) 2148.
[27] Y. Abe, K. Nakabayashi, N. Matsukawa, H. Takashima, M. Iida, T. Tanase, M.
Sugibayashi, H. Mukai, K. Ohta, Inorg. Chim. Acta 359 (2006) 3934.
[28] Y. Abe, N. Nakazima, T. Tanase, S. Katano, H. Mukai, K. Ohta, Mol. Cryst. Liq.
Cryst. 466 (2007) 129.
D
E in eV
Chemical softness
O(1)O(2)N(2)N(1)
N(1)O(1)O(2)N(2)
[29] Y. Abe, K. Nakabayashi, N. Matsukawa, M. Iida, T. Tanase, M. Sugibayashia, K.
Ohta, Inorg. Chem. Commun. 7 (2004) 580.
[30] Y. Abe, H. Akao, Y. Yoshida, H. Takashima, T. Tanase, H. Mukai, K. Ohta, Inorg.
Chim. Acta 359 (2006) 3147.
17.9
17.5
15.0
[31] A. Glebowska, P. Przybylski, M. Winek, P. Krzyczkowaska, A. Krowczynski, Z.
Szydlowska, D. Pociecha, E. Gorecka, J. Mater. Chem. 19 (2009) 1395.
[32] E. Cavero, S. Uriel, P. Romero, J.L. Serrano, R. Giménez, J. Am. Chem. Soc. 129
(2007) 11608.
4. Conclusion
[33] Z. Rezvani, A.R. Abbasi, K. Nejati, M. Seyedahmadian, Polyhedron 24 (2005)
1461.
[34] K. Nejati, Z. Rezvani, New J. Chem. 27 (2003) 1665.
[35] Z. Rezvani, M.A. Ghanea, K. Nejati, S.A. Baghaei, Polyhedron 28 (2009) 2913.
[36] C.R. Bhattacharjee, G. Das, P. Mondal, S.K. Prasad, D.S.S. Rao, Inorg. Chem.
Commun. 14 (2011) 606.
[37] C.R. Bhattacharjee, G. Das, P. Mondal, Liq. Cryst. 38 (2011) 441.
[38] C.R. Bhattacharjee, G. Das, P. Mondal, S.K. Prasad, D.S.S. Rao, Liq. Cryst. 38
(2011) 615.
[39] F. Morale, R.W. Date, D. Guillon, D.W. Bruce, R.L. Finn, C. Wilson, A.J. Blake, M.
Schroder, B. Donnio, Chem. Eur. J. 9 (2003) 2484.
A new series of Ni(II)–salphen complexes bearing differently
substituted aromatic spacer have been successfully synthesized.
Lower conductivity values confirm the non electrolytic nature of
the complexes. The ligands are found to be non-mesogenic and
non-luminescent, however, all the complexes exhibited unprece-
dented columnar rectangular structure with c2mm symmetry and
also exhibited intense blue light emission both in solid state and
solution. Based on the spectral and DFT study, a distorted square
planar geometry around the Ni(II) center have been conjectured.
The mesomorphic behavior of the complexes as a function of the
spacer substituent is collated.
[40] S. Kumar, Chem. Soc. Rev. 35 (2006) 83.
[41] J.W. Goodby, V. Gortz, S.J. Cowling, G. Mackenzie, P. Martin, D. Plusquellec, T.
Benvegnu, P. Boullanger, D. Lafont, Y. Queneau, S. Chambert, J. Fitremann,
Chem. Soc. Rev. 36 (2007) 1971.
[42] M. O’Neill, S.M. Kelly, Adv. Mater. 15 (2003) 1135.
[43] R. Cristiano, H. Gallardo, A.J. Bortoluzzi, I.H. Bechtold, C.E.M. Campos, R.L.
Longo, Chem. Commun. (2008) 5134.
[44] S. Sergeyev, W. Pisula, Y.H. Geerts, Chem. Soc. Rev. 36 (2007) 1902.
[45] Y. Shirota, H. Kageyama, Chem. Rev. 107 (2007) 953.
[46] M. Sawamura, K. Kawai, Y. Matusuo, K. Kanie, T. Kato, Nature 419 (2002)
702.
[47] I. Seguy, P. Jolinat, P. Destruel, R. Mamy, J. Appl. Phys. 89 (2001) 5442.
[48] A.M. Van de Craats, N. Stutzmann, M.M. Nielsen, M. Watson, Adv. Mater. 15
(2003) 495.
Acknowledgments
The authors thank SAIF, NEHU and CDRI, Lucknow for analytical
and spectral data. CD acknowledges financial support from UGC,
Government of India. Dr. R.C. Deka, Tezpur University, India, is
acknowledged for computational facility.
[49] S. Laschat, A. Baro, N. Steinke, F. Giesselmann, C. Hagele, G. Scalia, R. Judele, E.
Kapatsina, S. Sauer, A. Schreivogel, M. Tosoni, Angew. Chem., Int. Ed. 46 (2007)
4832.
[50] D. Pucci, I. Aiello, A. Bellusci, A. Crispini, M. Ghedini, M. La Deda, Eur. J. Inorg.
Chem. (2009) 4274.
[51] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
[52] B. Delley, J. Chem. Phys. 92 (1990) 508.
[53] B. Delley, J. Chem. Phys. 113 (2000) 7756.
References
[1] Y. Molard, F. Dorson, V. Circu, T. Roisnel, F. Artzner, S. Cordier, Angew. Chem.,
Int. Ed. 49 (2010) 3351.
[2] C.S. Pecinovsky, E.S. Hatakeyama, D.L. Gin, Adv. Mater. 20 (2008) 174.
[3] X. Feng, W. Pisula, L. Zhi, M. Takase, K. Mullen, Angew. Chem., Int. Ed. 47 (2008)
[54] B. Delley, J. Phys. Chem. 100 (1996) 6107.
[55] R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105 (1983) 7512.
[56] T.A. Koopmans, Physica 1 (1933) 104.
1703.
[4] M.J. Baena, P. Espinet, C.L. Folcia, J. Ortega, J. Etxebarria, Inorg. Chem. 49 (2010)
8904.