The authors thank the University of Geneva and the Swiss
National Science Foundation (200021-121718) for the finan-
cial support and acknowledge COST Action D43 and the
contributions of the Bioimaging, Mass Spectrometry, and
NMR platforms at the University of Geneva.
Notes and references
1 V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless,
Angew. Chem., Int. Ed., 2002, 41, 2596–2599.
2 H. Musiol, S. Dong, M. Kaiser, R. Bausinger, A. Zumbusch,
U. Bertsch and L. Moroder, ChemBioChem, 2005, 6, 625–628.
3 M. D. Best, M. M. Rowland and H. E. Bostic, Acc. Chem. Res.,
2011, 44, 686–698.
4 S. Zhang and Y. Zhao, Bioconjugate Chem., 2011, 22, 523–528.
5 S. Chiruvolu, S. Walker, J. Israelachvili, F. J. Schmitt,
D. Leckband and J. A. Zasadzinski, Science, 1994, 264, 1753–1756.
6 H. Ringsdorf, B. Schlarb and J. Venzmer, Angew. Chem., Int. Ed.
Engl., 1988, 27, 113–158.
7 Z. Sideratou, D. Tsiourvas, C. M. Paleos, A. Tsortos and
G. Nounesis, Langmuir, 2000, 16, 9186–9191.
8 F. M. Menger and H. Zhang, J. Am. Chem. Soc., 2006, 128,
1414–1415.
9 M. Ma, A. Paredes and D. Bong, J. Am. Chem. Soc., 2008, 130,
14456–14458.
10 M. Ma, Y. Gong and D. Bong, J. Am. Chem. Soc., 2009, 131,
16919–16926.
Fig. 1 Analysis of particle-size using dynamic light-scattering (A and
B) and transition electron microscopy (C and D, vesicle age = 4 days).
Vesicles measured in A showed minor aggregate formation after day 1
and larger aggregates after day 4. C and D show the effect of Cu-salt
induced vesicle aggregation (C) and the additional click reaction
between vesicles (D) (scale bar = 1 mm).
11 V. Marchi-Artzner, T. Gulik-Krzywicki, M. A. Guedeau-Boudeville,
C. Gosse, J. M. Sanderson, J. C. Dedieu and J. M. Lehn,
ChemPhysChem, 2001, 2, 367–376.
12 Z. Sideratou, D. Tsiourvas, C. M. Paleos, A. Tsortos,
S. Pyrpassopoulos and G. Nounesis, Langmuir, 2002, 18, 829–835.
13 E. C. Constable, S. Mundwiler, W. Meier and C. Nardin, Chem.
Commun., 1999, 1483–1484.
14 A. Richard, V. Marchi-Artzner, M. N. Lalloz, M. J. Brienne,
F. Artzner, T. Gulik-Krzywicki, M. A. Guedeau-Boudeville and
J. M. Lehn, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 15279–15284.
´
15 D. Tareste, F. Pincet, M. Brellier, C. Mioskowski and E. Perez,
J. Am. Chem. Soc., 2005, 127, 3879–3884.
16 S. Iwamoto, M. Otsuki, Y. Sasaki, A. Ikeda and J. Kikuchi,
Tetrahedron, 2004, 60, 9841–9847.
17 X. Wang, R. J. Mart and S. J. Webb, Org. Biomol. Chem., 2007, 5,
2498–2505.
Fig. 2 Proposed mechanism of action: oppositely charged 100 nm
large unilamellar vesicles aggregate and are then tethered together via
1,3-dipolar cycloaddition. The close proximity of the membranes is
promoting vesicle fusion and giant unilamellar vesicles are formed.
18 C. Wang, S. Wang, J. Huang, Z. Li, Q. Gao and B. Zhu, Langmuir,
2003, 19, 7676–7678.
19 F. M. Menger, J. Bian and V. A. Seredyuk, Angew. Chem., 2004,
116, 1285–1287.
20 S. C. Burgel, O. Guillaume-Gentil, L. Zheng, J. Voros and
M. Bally, Langmuir, 2010, 26, 10995–11002.
21 F. M. Menger, V. A. Seredyuk and A. A. Yaroslavov, Angew.
Chem., 2002, 114, 1406–1408.
22 I. A. Fedotenko, P.-L. Zaffalon, F. Favarger and A. Zumbuehl,
Tetrahedron Lett., 2010, 51, 5382–5384.
23 F. Olson, C. A. Hunt, F. C. Szoka, W. J. Vail and
D. Papahadjopoulos, Biochim. Biophys. Acta, Biomembr., 1979,
557, 9–23.
24 S. Cavalli, A. R. Tipton, M. Overhand and A. Kros, Chem.
Commun., 2006, 3193–3195.
showed fusion of only approx. 7 vesicles (Fig. 1C). These facts
are hinting at a dynamic aggregation–dissociation in Mix B + C
versus a stable chemical linkage in Mix A + B and lead us to
propose the mechanism of action in Fig. 2.
In conclusion, we have synthesized artificial phospholipids
containing either an alkyne or an azido function. In the
presence of CuBr, oppositely charged large unilamellar vesi-
cles formulated from a mixture of eggPC and the artificial
phospholipids would initially aggregate, held together by a
triazole-linked phospholipid connector and then fuse into
large unilamellar structures.
c
1606 Chem. Commun., 2012, 48, 1604–1606
This journal is The Royal Society of Chemistry 2012