ORGANIC
LETTERS
2012
Vol. 14, No. 3
862–865
Heteroarylation of Azine N-Oxides
Francis Gosselin,*,† Scott J. Savage,† Nicole Blaquiere,‡ and Steven T. Staben‡
Small Molecule Process Chemistry and Discovery Chemistry, Genentech Inc., 1 DNA
Way, South San Francisco, California 94080, United States
Received December 19, 2011
ABSTRACT
Azine N-oxides undergo highly regioselective metalation with TMPZnCl LiCl under mild conditions. A palladium-catalyzed Negishi cross-
3
coupling reaction of the resulting organozinc species with heteroaromatic bromides provides heterobiaryls specifically oxidized at one nitrogen
position in up to 95% yield.
Heterobiaryls containingazinesareimportantstructural
components of pharmaceutically relevant small-molecules
and catalysts.1,2 Inthe context ofa researchprogramin our
laboratories, we required access to a number of hetero-
biaryl motifs where one of the azine nitrogens was specifi-
cally oxidized (Figure 1). The lack of stability of 2-pyridyl
organometallics combined with the requirement for a
challenging late-stage site-selective nitrogen oxidation pro-
mpted us to examine the metalation/heteroarylation of
azine N-oxides. This approach would provide a stable or-
ganometallic species and would enable complete control
over the site of nitrogen oxidation. The regioselective
arylation ofazineshasbeen achievedthrough Pd-catalyzed
direct arylation of the corresponding N-oxides and
N-iminopyridinium-ylides.3 Although attractive, direct
arylation methods based on azine N-oxides have been re-
ported to provide unsatisfactory yields of coupling products
with heteroaryl halides.3a Furthermore, reactions performed
on substituted azine N-oxides can result in diminished yields of
desired arylation products.3b,4 Alternative approaches invol-
ving halogen-metal exchange of 2-bromo-pyridine N-oxides
under cryogenic conditions followed by Pd-catalyzed cross-
coupling have also been reported.5ꢀ8 Inspired by the recent
work of Knochel and co-workers, we envisioned that tetra-
methylpiperidinylzinc chloride lithium chloride (TMPZnCl
3
LiCl, TMP = 2,2,6,6-tetramethylpiperidide) could perform
selective metalation of azine N-oxides under mild condi-
tions.9ꢀ11 We report herein the regioselective metalation/
heteroarylation of both simple and highly substituted azine
(4) Direct arylation of pyridine N-oxides with bromopyridines pro-
ceeds in modest yields, see: Duric, S.; Tzschucke, C. C. Org. Lett. 2011,
13, 2310–2313.
(5) Duan, X.-F.; Ma, Z.-Q.; Zhang, F.; Zhang, Z.-B. J. Org. Chem.
2009, 74, 939–942.
(6) Lack of selectivity in lithiation of substituted azine N-oxides has
been noted, see: (a) Garcıa-Flores, F.; Flores-Michel, L. S.; Juaristi, E.
´
† Small Molecule Process Chemistry.
‡ Discovery Chemistry.
(1) Capdeville, R.; Buchdunger, E.; Zimmermann, J.; Matter, A.
Tetrahedron Lett. 2006, 47, 8235–8238. (b) Abramovitch, R. A.; Smith,
E. M.; Knaus, E. E.; Saha, M. J. Org. Chem. 1972, 37, 1690–1696.
(7) For an alternative approach involving ring-opening organome-
tallic addition on pyridine N-oxides followed by ring-closure, see:
Andersson, H.; Almqvist, F.; Olsson, R. Org. Lett. 2007, 9, 1335–1337.
(8) For addition of organomagnesium reagents to nitropyridine
N-oxides, see: Zhang, F.; Duan, X.-F. Org. Lett. 2011, 13, 6102–6105.
(9) For metalation of pyridine N-oxide using Zn(TMP)2 see: (a)
Hlavinka, M. L.; Hagadorn, J. R. Organometallics 2007, 26, 4105–
4108. Cross-coupling of the resulting diarylzinc species with PhBr was
reported, albeit without isolated yield. For metalation with LiTMP
under cryogenic conditions, see: (b) Denmark, S. E.; Fan, Y. Tetrahe-
dron: Asymmetry 2006, 17, 687–707.
Nature 2002, 1, 493–502.
(2) Malkov, A. V.; Dufkova, L.; Farrugia, L.; Kocovsky, P. Angew.
ꢀ
Chem., Int. Ed. 2003, 42, 3674–3677.
(3) For direct arylation of azine N-oxides, see: (a) Campeau, L.-C.;
Rousseaux, S.; Fagnou, K. J. Am. Chem. Soc. 2005, 127, 18020–18021.
(b) Campeau, L.-C.; Stuart, D. R.; Leclerc, J.-P.; Bertrand-Laperle, M.;
Villemure, E.; Sun, H.-Y.; Lasserre, S.; Guimond, N.; Lecavallier, M.;
Fagnou, K. J. Am. Chem. Soc. 2009, 131, 3291–3306. (c) Campeau
L.-C.; Schipper, D. J.; Fagnou, K. J. Am. Chem. Soc. 2008, 130
3266–3267. (d) Schipper, D. J.; Campeau, L.-C.; Fagnou, K. Tetrahe-
dron 2009, 65, 3155–3164. For direct arylation of N-iminopyridinium
(10) (a) Mosrin, M.; Knochel, P. Org. Lett. 2009, 11, 1837–1840. (b)
Bresser, T.; Mosrin, M.; Monzon, G.; Knochel, P. J. Org. Chem. 2010,
75, 4686–4695. (c) Bresser, T.; Monzon, G.; Mosrin, M.; Knochel, P.
Org. Process Res. Dev. 2010, 14, 1299–1303.
ꢀ
ylides, see: (e) Larivee, A.; Mousseau, J. J.; Charette, A. B. J. Am. Chem.
Soc. 2008, 130, 52–54. Reviewed in: (f) Alberico, D.; Scott, M. E.;
Lautens, M. Chem. Rev. 2007, 107, 174–238.
r
10.1021/ol203388j
Published on Web 01/19/2012
2012 American Chemical Society