96
Z. Bıyıklıog˘lu et al. / Journal of Photochemistry and Photobiology A: Chemistry 222 (2011) 87–96
[11] J. Moan, K. Berg, E. Kvam, A. Western, Z. Malik, A. Ruck, H. Schneckenburger,
in: G. Bock, S. Harnett (Eds.), Photosensitizing Compounds: Their Chemistry,
Biology and Clinical Use, John Wiley and Sons, New York, 1989, pp. 95–111.
[12] G. Jori, Photosensitized processes in vivo: proposed phototherapeutic applica-
tions, Photochem. Photobiol. 52 (1990) 439–443.
[13] T.J. Dougherty, A brief history of clinical photodynamic therapy development
at Roswell Park Cancer Institute, J. Clin. Laser Med. Surg. 14 (1996) 219–221.
[14] E. Ben-Hur, I. Rosenthal, Photosensitized inactivation of Chinese hamster cells
by phthalocyanines, Photochem. Photobiol. 42 (1985) 129–133.
[15] C.M. Allen, W.M. Sharman, J.E. van Lier, Current status of phthalocyanines in
the photodynamic therapy of cancer, J. Porphyrins Phthalocyanines 5 (2001)
161–169.
[40] S. Fery-Forgues, D. Lavabre, Are fluorescence quantum yields so tricky to mea-
sure? A demonstration using familiar stationery products, J. Chem. Educ. 76
(1999) 1260–1264.
[41] D. Maree, T. Nyokong, K. Suhling, D. Phillips, Effects of axial ligands on the
photophysical properties of silicon octaphenoxyphthalocyanine, J. Porphyrins
Phthalocyanines 6 (2002) 373–376.
[42] A. Ogunsipe, J.Y. Chen, T. Nyokong, Photophysical and photochemical studies of
zinc(II) phthalocyanine derivatives – effects of substituents and solvents, New
J. Chem. 28 (2004) 822–827.
[43] H. Du, R.A. Fuh, J. Li, A. Corkan, J.S. Lindsey, PhotochemCAD: a computer-aided
design and research tool in photochemistry, Photochem. Photobiol. 68 (1998)
141–142.
[16] H. Ali, J.E. van Lier, Metal complexes as photo- and radiosensitizers, Chem. Rev.
99 (1999) 2379–2450.
[44] J.H. Brannon, D. Madge, Picosecond laser photophysics. Group 3A phthalocya-
nines, J. Am. Chem. Soc. 102 (1980) 62–65.
[17] D. Phillips, The photochemistry of sensitisers for photodynamic therapy, Pure
Appl. Chem. 67 (1995) 117–126.
[18] R. Bonnett, Photosensitizers of the porphyrin and phthalocyanine series for
photodynamic therapy, Chem. Soc. Rev. 24 (1995) 19–33.
[19] A.C. Tedesco, J.C.G. Rotta, C.N. Lunardi, Synthesis, photophysical and photo-
chemical aspects of phthalocyanines for photodynamic therapy, Curr. Org.
Chem. 7 (2003) 187–196.
[45] A. Ogunsipe, T. Nyokong, Photophysical and photochemical studies of
sulphonated non-transition metal phthalocyanines in aqueous and non-
aqueous media, J. Photochem. Photobiol. A: Chem. 173 (2005) 211–220.
[46] N. Kuznetsova, N. Gretsova, E. Kalmkova, E. Makarova, S. Dashkevich, V. Neg-
rimovskii, O. Kaliya, E. Luk’yanets, Relationship between the photochemical
properties and structure of porphyrins and related compounds, Russ. J. Gen.
Chem. 70 (2000) 133–140.
[20] T. Nyokong, Effects of substituents on the photochemical and photophysical
properties of main group metal phthalocyanines, Coord. Chem. Rev. 251 (2007)
1707–1722.
[21] I. Gürol, M. Durmus¸ , V. Ahsen, T. Nyokong, Synthesis, photophysical and pho-
tochemical properties of substituted zinc phthalocyanines, Dalton Trans. 34
(2007) 3782–3791.
[47] W. Spiller, H. Kliesch, D. Wöhrle, S. Hackbarth, B. Roder, G. Schnurpfeil, Sin-
glet oxygen quantum yields of different photosensitizers in polar solvents and
micellar solutions, J. Porphyrins Phthalocyanines 2 (1998) 145–158.
[48] D.M. Chipman, V. Grisaro, N. Shanon, The binding of oligosaccharides contain-
ing n-acetylglucosamine and n-acetylmuramic acid to lysozyme: the specificity
of binding subsites, J. Biol. Chem. 242 (1967) 4388–4394.
[22] D. Atilla, N. Saydan, M. Durmus¸ , A.G. Gürek, T. Khan, A. Rück, H. Walt,
T. Nyokong, V. Ahsen, Synthesis and photodynamic potential of tetra- and
octa-triethyleneoxysulfonyl substituted zinc phthalocyanines, J. Photochem.
Photobiol. A: Chem. 186 (2007) 298–307.
[23] N. Saydan, M. Durmus¸ , M.G. Dizge, H. Yaman, A.G. Gürek, E. Antunes, T.
Nyokong, V. Ahsen, Water-soluble phthalocyanines mediated photodynamic
effect on mesothelioma cells, J. Porphyrins Phthalocyanines 13 (2009) 681–690.
[24] H.R.P. Karaog˘lu, A. Gül, M.B. Koc¸ ak, Synthesis and characterization of a new
tetracationic phthalocyanine, Dyes Pigments 76 (2008) 231–235.
[25] M. Durmus¸ , Z. Bıyıklıog˘lu, H. Kantekin, Synthesis, photophysical and photo-
chemical properties of crown ether substituted zinc phthalocyanines, Synth.
Met. 159 (2009) 1563–1571.
[26] H. Li, T.J. Jensen, F.R. Fronczek, M.G.H. Vicente, Syntheses and properties of
a series of cationic water-soluble phthalocyanines, J. Med. Chem. 51 (2008)
502–511.
[27] I. Scalise, E.N. Durantini, Synthesis, properties, and photodynamic inactivation
of Escherichia coli using a cationic and a noncharged Zn(II) pyridyloxyphthalo-
cyanine derivatives, Bioorg. Med. Chem. 13 (2005) 3037–3045.
[28] S. Wei, J. Zhou, D. Huang, X. Wang, B. Zhang, J. Shen, Synthesis and Type I/Type
II photosensitizing properties of a novel amphiphilic zinc phthalocyanine, Dyes
Pigments 71 (2006) 61–67.
[29] W. Duan, P. Lo, L. Duan, W.-P. Fong, D.K.P. Ng, Preparation and in vitro
photodynamic activity of amphiphilic zinc(II) phthalocyanines substituted
with 2-(dimethylamino)ethylthio moieties and their N-alkylated derivatives,
Bioorg. Med. Chem. 18 (2010) 2672–2677.
[30] K.E. Treacher, G.J. Clarkson, N.B. McKeown, Novel amphiphilic phthalocyanine
mesogens, Mol. Cryst. Liq. Cryst. 260 (1995) 255–260.
[31] P.-C. Lo, J.-D. Huang, D.Y.Y. Cheng, E.Y.M. Chan, W.-P. Fong, W.-H. Ko, D.K.P.
Ng, New amphiphilic silicon(IV) phthalocyanines as efficient photosensitizers
for photodynamic therapy: synthesis, photophysical properties, and in vitro
photodynamic activities, Chem. -A Eur. J. 10 (2004) 4831–4838.
[32] U. Kumru, M.A. Ermeydan, F. Dumoulin, V. Ahsen, Amphiphilic galactosylated
phthalocyanines, J. Porphyrins Phthalocyanines 12 (2008) 1090–1095.
[33] M.A. Ermeydan, F. Dumoulin, T.V. Basova, D. Bouchu, A.G. Gürek, V. Ahsen,
D. Lafont, Amphiphilic carbohydrate–phthalocyanine conjugates obtained by
glycosylation or by azide–alkyne click reaction, New J. Chem. 34 (2010)
1153–1162.
[49] S.M.T. Nunes, F.S. Sguilla, A.C. Tedesco, Photophysical studies of zinc phthalo-
cyanine and chloroaluminum phthalocyanine incorporated into liposomes in
the presence of additives, Braz. J. Med. Biol. Res. 37 (2004) 273–284.
[50] S. Lehrer, G.D. Fashman, The fluorescence of lysozyme and lysozyme substrate
complexes, Biochem. Biophys. Res. Commun. 23 (1966) 133–138.
[51] J.R. Lakowicz, G. Weber, Quenching of fluorescence by oxygen. Probe for struc-
tural fluctuations in macromolecules, Biochemistry 12 (1973) 4161–4170.
[52] C.Q. Jiang, M.X. Gao, J.X. He, Study of the interaction between terazosin and
serum albumin: synchronous fluorescence determination of terazosin, Anal.
Chim. Acta 452 (2002) 185–189.
[53] M. Gou, J.W. Zou, P.G. Yi, Z.C. Shang, G.X. Hu, Q.S. Yu, Binding interaction of
gatifloxacin with bovine serum albumin, Anal. Sci. 20 (2004) 465–470.
[54] C.C. Leznoff, in: C.C. Leznoff, A.B.P. Lever (Eds.), Phthalocyanines: Properties and
Applications, vol. 1, VCH Publishers, New York, 1989 (Chapter 1).
[55] F. Hacıveliog˘lu, M. Durmus¸ , S. Yes¸ ilot, A.G. Gürek, A. Kılıc¸ , V. Ahsen, The syn-
thesis, spectroscopic and thermal properties of phenoxycyclotriphosphazenyl-
substituted phthalocyanines, Dyes Pigments 79 (2008) 14–23.
[56] M.J. Stillman, T. Nyokong, in: C.C. Leznoff, A.B.P. Lever (Eds.), Phthalocyanines:
Properties and Applications, vol. 1, VCH Publishers, New York, 1989 (Chapter
3).
[57] A.B. Anderson, T.L. Gorden, M.E. Kenney, Electronic and redox properties of
stacked-ring silicon phthalocyanines from molecular orbital theory, J. Am.
Chem. Soc. 107 (1985) 192–195.
[58] M. Konami, M. Hatano, A. Tajiri, Inter-ring overlap integrals in dimer complexes
of phthalocyanines and porphyrins, Chem. Phys. Lett. 166 (1990) 605–608.
[59] H. Enkelkamp, R.J.M. Nolte, Molecular materials based on crown ether func-
tionalized phthalocyanines, J. Porphyrins Phthalocyanines 4 (2000) 454–459.
[60] D.D. Dominquez, A.W. Snow, J.S. Shirk, R.G.S. Pong, Polyethyleneoxide-capped
phthalocyanines: limiting phthalocyanine aggregation to dimer formation, J.
Porphyrins Phthalocyanines 5 (2001) 582–592.
[61] E.A. Lissi, M.V. Encinas, E. Lemp, M.A. Rubio, Singlet oxygen O2 (1ꢁg) bimolecu-
lar processes. Solvent and compartmentalization effects, Chem. Rev. 93v (1993)
699–723.
[62] G. Schnurpfeil, A.K. Sobbi, W. Spiller, H. Kliesch, D. Wöhrle, Photo-oxidative
stability and its correlation with semi-empirical MO calculations of various
tetraazaporphyrin derivatives in solution, J. Porphyrins Phthalocyanines 1
(1997) 159–167.
[34] M. Kimura, H. Ueki, K. Ohta, K. Hanabusa, H. Shirai, N. Kobayashi, Aggregation
behavior of amphiphilic phthalocyanine block copolymers, Langmuir 18 (2002)
7683–7687.
[35] D.C. Carter, J.X. Ho, Structure of serum albumin, Adv. Protein Chem. 45 (1994)
153–176.
[36] T. Peters, Serum albumin, Adv. Protein Chem. 37 (1985) 161–245.
[37] D.D. Perrin, W.L.F. Armarego, Purification of Laboratory Chemicals, 2nd ed.,
Pegamon Press, Oxford, 1989.
[38] J.G. Young, W. Onyebuagu, Synthesis and characterization of di-disubstituted
phthalocyanines, J. Org. Chem. 55 (1990) 2155–2159.
[63] M. Idowu, T. Nyokong, Photophysical and photochemical properties of tetrasul-
fonated silicon and germanium phthalocyanine in aqueous and non-aqueous
media, J. Photochem. Photobiol. A: Chem. 197 (2008) 273–280.
[64] S. Khene, A. Ogunsipe, E. Antunes, T. Nyokong, Microwave synthesis and
photophysics of new tetrasulfonated tin(II) macrocycles, J. Porphyrins Phthalo-
cyanines 11 (2007) 109–117.
[65] R.D. George, A.W. Snow, J.S. Shirk, W.R. Barger, The alpha substitution effect on
phthalocyanine aggregation, J. Porphyrins Phthalocyanines 2 (1998) 1–7.
[66] S.L. Murov, I. Carmichael, G.L. Hug, Handbook of Photochemistry, 2nd ed., M.
Decker, New York, 1993.
[39] R.D. George, A.W. Snow, Synthesis of 3-nitrophthalonitrile and tetra-␣-
substituted phthalocyanines, J. Heterocycl. Chem. 32 (1995) 495–498.
[67] R. Nilsson, D.R. Kearns, Role of singlet oxygen in some chemiluminescence and
enzyme oxidation reactions, J. Phys. Chem. 78 (1974) 1681–1683.