the asymmetric [2 þ 2] photocycloaddition reactions,
which are known to efficiently prepare the enantiomer-
ically pure cyclobutane scaffold, have attracted consider-
able research interest from organic chemists.10,11 For
example, several valuable chiral auxiliaries derived from
(þ)-menthol,11a,b,d,f,j tartaric acid,11i and naphthalene11e
have been employed in the asymmetric [2 þ 2] photoaddi-
tion domain. Despite these advances, the research focused
on this issue is still in its early stages and the development of
an efficient and practical method is greatly desirable.
With our continuous efforts in the organic photo-
reactions,12 we endeavored in exploring an “ideal” chiral
auxiliary which features a series of applicability: (i) it can
be readily prepared from an available natural source, (ii)
easily removed after photoreaction, and (iii) lead to ex-
cellent stereoselectivity as well as satisfactory yield. A
literature survey showed that a variety of camphor-derived
auxiliaries had been widely implemented in the field of
asymmetric synthesis in the ground state, such as
DielsꢀAlder reaction,13 [3 þ 2] cycloaddition,14 aldol
addition,15 PausonꢀKhand reaction,16 BaylisꢀHillman
reaction,17 asymmetric cyclopentannelation,18 etc. We
therefore envisioned that natural (þ)-camphor derivative
1 might be an optimal candidate to achieve asymmetric
induction in organic photochemistry, owing to the steric
hindrance originated from the methyl groups on C-1 or/
and C-7. To the best of our knowledge, the examples of
camphor derivative induced asymmetric photoreactions
are still scarce.11a,h Herein, we report the asymmetric inter-
molecular [2 þ 2] photoaddition reactions by means of a
camphor-derived chiral auxiliary.
Initially, chiral auxiliary 1 was readily prepared in two
steps according to the literature procedure starting from
natural (þ)-camphor,19 which was then converted to the
amide 3 by condensation with carboxylic acid 2 in the
presence of carbonyl diimidazole (CDI). Sequential cycli-
zation reaction of 3 with phosphorus oxychloride led to the
oxazoline 420 in 86% isolated yield (Scheme 1).
(10) For recent reviews on asymmetric photoaddition reactions, see:
(a) Bach, T. Synthesis 1998, 683–708. (b) Namyslo, J. C.; Kaufmann,
D. E. Chem. Rev. 2003, 103, 1485–1537. (c) Lee-Ruff, E.; Mladenova, G.
Chem. Rev. 2003, 103, 1449–1483.
Scheme 1. Synthesis of Compound 4
(11) For selected examples, see: (a) Lange, G. L.; Decicco, C.; Tan,
S. L.; Chamberlain, G. Tetrahedron Lett. 1985, 26, 4707–4710. (b)
Hoffmann, N.; Scharf, H. D.; Runsink, J. Tetrahedron Lett. 1989, 30,
2637–2638. (c) Lange, G. L.; Humber, C. C.; Manthorpe, J. M. Tetra-
hedron: Asymmetry 2002, 13, 1355–1362. (d) Tsutsumi, K.; Endou, K.;
Furutani, A.; Ikki, T.; Nakano, H.; Shintani, T.; Morimoto, T.; Kakiuchi,
K. Chirality 2003, 15, 504–509. (e) Tsutsumi, K.; Nakano, H.; Furutani,
A.; Endou, K.; Merpuge, A.; Shintani, T.; Morimoto, T.; Kakiuchi, K. J.
Org. Chem. 2004, 69, 785–789. (f) Furutani, A.; Tsutsumi, K.; Nakano, H.;
Morimoto, T.; Kakiuchi, K. Tetrahedron Lett. 2004, 45, 7621–7624. (g) Le
Liepvre, M.; Ollivier, J.; Aitken, D. J. Eur. J. Org. Chem. 2009, 5953–5962.
(h) Herzog, H.; Koch, H.; Scharf, H. D.; Runsink, J. Tetrahedron 1986, 42,
3547–3558. (i) Lange, G. L.; Decicco, C. Tetrahedron Lett. 1988, 29, 2613–
2614. (j) Lange, G. L.; Decicco, C.; Lee, M. Tetrahedron Lett. 1987, 28,
2833–2836.
(12) (a) Xia, W.; Yang, C.; Scheffer, J. R. J. Am. Chem. Soc. 2005,
127, 2725–2730. (b) Xia, W.; Shao, Y.; Gui, W.; Yang, C. Chem.
Commun. 2011, 47, 11098–11100. (c) Scheffer, J. R.; Xia, W. Top. Curr.
Chem. 2005, 254, 233–262. (d) Yang, C.; Xia, W.; Scheffer, J. R.;
Botoshansky, M.; Kaftory, M. Angew. Chem., Int. Ed. 2005, 44, 5087–
5089. (e) Yang, C; Xia, W; Scheffer, J. R. Tetrahedron 2007, 63, 6791–
6795. (f) Zhao, G.; Yang, C.; Chen, Q.; Jin, J.; Zhang, X.; Zhao, L.; Xia,
W. Tetrahedron 2009, 65, 9952–9955. (h) Yang, C.; Xia, W. Chem.;
Asian J. 2009, 4, 1774–1784.
(13) (a) Kouklovsky, C.; Pouilhes, A.; Langlois, Y. J. Am. Chem. Soc.
1990, 112, 6672–6679. (b) Denmark, S. E.; Schnute, M. E. J. Org. Chem.
1991, 56, 6738–6739. (c) Banks, M. R.; Blake, A. J.; Cadogan, J. I. G.;
Doyle, A. A.; Gosney, I.; Hodgson, P. K. G.; Thorburn, P. Tetrahedron
1996, 52, 4079–4094.
With the chiral reactant 4 in hand, the investigation on
the photoaddition reaction of 4 with enone 5a21 was then
carried out using a medium-pressure mercury lamp as a
light source through a Pyrex filter (λ > 300 nm), which was
widely used in [2 þ 2] photoaddition to minimize the
decomposition of adduct products11 (Scheme 2). To our
delight, the reaction occurred smoothly in CH2Cl2 to
provide the photoadduct 6a in 84% isolatd yield after
irradiation for 5 h. A mixture of diastereomers of 6a was
observed by NMR analysis, which could not be separated
by silica gel column chromatography. The 1H NMR
spectra of the diastereomers displayed a similar resonance
of the methyne protons at 3.15 ppm (d, J = 11.2 Hz)
for H-7 and 2.91 ppm (dd, J = 10.8, 3.6 Hz) for H-8,
(14) (a) Berranger, T.; Langlois, Y. J. Org. Chem. 1995, 60, 1720–
1726. (b) Kouklovsky, C.; Dirat, O.; Berranger, T.; Langlois, Y.;
Tran-Huu-Dau, M. E.; Riche, C. J. Org. Chem. 1998, 63, 5123–4128.
(15) (a) Bonner, M. P.; Thornton, E. R. J. Am. Chem. Soc. 1991, 113,
1299–1308. (b) Ahn, K. H.; Lee, S.; Lim, A. J. Org. Chem. 1992, 57,
5065–5066. (c) Palomo, C.; Oiarbide, M.; Garcıa, J. M. Chem. Soc. Rev.
´
2004, 33, 65–75. (d) Boeckman, R. K., Jr.; Conneu, B. T. J. Am. Chem.
Soc. 1995, 117, 12368–12369. (e) Boeckman, R. K., Jr.; Pero, J. E.;
Boehmler, D. J. J. Am. Chem. Soc. 2006, 128, 11032–11033. (f) Wang, Y.;
Hung, A.; Chang, C.; Yan, T. J. Org. Chem. 1996, 61, 2038–2043.
(17) Yang, K.; Chen, K. Org. Lett. 2000, 2, 729–731.
(18) Harrington, P. E.; Murai, T.; Chu, C.; Tius, M. A. J. Am. Chem.
Soc. 2002, 124, 10091–10100.
ꢀ
(16) (a) Verdaguer, X.; Moyano, A.; Pericas, M. A.; Riera, A.;
(19) (a) Gawley, R. E.; Zhang, P. J. Org. Chem. 1996, 61, 8103–8112.
(b) Chen, Y. K.; Jeon, S. J.; Walsh, P. J.; Nugent, W. A. Org. Synth.
2005, 82, 87–92. (c) Shimizu, M.; Teramoto, Y.; FujisawaT.
Tetrahedron Lett. 1995, 36, 729–732. (d) Nugent, W. A. Chem. Commun.
1999, 1369–1370.
(20) The DFT calculations were performed with the use of B3LYP
6-31G*. The difference in strain energy between cis-4 and trans-4 is 1.8
kcal/mol in favor of trans-4.
Bernardes, V.; Greene, A. E.; Alvarez-Larena, A.; Piniella, J. F. J.
Am. Chem. Soc. 1994, 116, 2153–2154. (b) Fonquerna, S.; Moyano, A.;
ꢀ
Pericas, M. A.; Riera, A. J. Am. Chem. Soc. 1997, 119, 10225–10226. (c)
ꢁ
Verdaguer, X.; Vazquez, J.; Fuster, G.; Bernardes, V.; Greene, A. E.;
ꢀ
Moyano, A.; Pericas, M. A.; Riera, A. J. Org. Chem. 1998, 63, 7037–
7052. (d) Marchueta, I.; Montenegro, E.; Panov, D.; Poch, M.;
ꢀ
Verdaguer, X.; Moyano, A.; Pericas, M. A.; Riera, A. J. Org. Chem.
ꢀ
2001, 66, 6400–6409. (e) Verdaguer, X.; Moyano, A.; Pericas, M. A.;
Riera, A.; Greene, A. E.; Piniella, J. F.; Alvarez-Larena, A. J. Organo-
met. Chem. 1992, 433, 305–310.
(21) Lange, G. L.; Otulakowski, J. A. J. Org. Chem. 1982, 47, 5093–
5096.
Org. Lett., Vol. 14, No. 3, 2012
777