INHIBITORS OF PFENR
1109
20. Qin, Z., Kastrati, I., Ashqodom, R. T., Lantvit, D. D., Overk, C. R., et
al. (2009) Structural modulation of oxidative metabolism in design of
improved benzothiophene selective estrogen receptor modulators. Drug
Metab. Dispos. 37, 161–169.
Industrial Research, Government of India for Senior Research
fellowship.
21. Bolognese, M., Krege, J. H., Utian, W. H., Feldman, R., Broy, S., et al.
(2009) Effects of arzoxifene on bone mineral density and endometrium in
post menopausal women with normal or low bone mass. J. Clin. Endocri-
nol. Metab. 94, 2284–2289.
REFERENCES
1. Peters, W. (1998) Drug resistance in malaria parasites of animals and
human. Adv. Parasitol. 41, 1–62.
2. Krogstad, D. J., Gluzman, I. V., Kyle, D. E., Oduola, A. M. J., Martins,
S. K., Milhouse, W. K., and Schlesinger, P. H. (1987) Efflux of chloro-
quine from Plasmodium falciparum: mechanism of chloroquine resist-
ance. Science 238, 1283–1285.
22. Thorneloe, K. S., Sulpizio, A. C., Lin, Z., Fiqueroa, D. J., Clouse, A. K.,
et al. (2008) N-((1S)-1-{[4-((2S)-2-[(2,4-Dichlorophenyl)sulfonyl]a-
mino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-
benzothiophene-2-carboxamide (GSK116790A), a novel and potent tran-
sient receptor potential vanilloid 4 channel agonist induces urinary bladder
contraction and hyperactivity. Part I. J. Pharmacol. Exp. Ther. 326, 432–
442.
3. Bray, P. G., Mungthin, M., Riley, R. G., and Ward, S. A. (1998) Access to
hematin the basis of chloroquine resistance. Mol. Pharmacol. 54, 170–179.
4. Mutabingwa, T. K., Anthony, D., Heller, A., Hallett, R., Ahmed, J., et al.
(2005) Amodiaquine alone, amodiaquine 1 sulfadoxine-pyrimethamine,
amodiaquine 1 artesunate, and artemether-lumefantrine for outpatient
treatment of malaria in Tanzanian children: a four-arm randomised effec-
tiveness trial. Lancet 365, 1474–1480.
23. Villar, R., Encio, I., Miqliaccio, M., Gil, M. J., and Martinez-Merino,
V. (2004) Synthesis and cytotoxic activity of lipophillic sulphonamide
derivatives of the benzo[b]thiophene 1,1 dioxide. Bioorg. Med. Chem.
12, 963–968.
5. Rathod, P. K., McErlean, T., and Lee, P. C. (1997) Variations in the
frequencies of drug resistance in Plasmodium falciparum. Proc. Natl.
Acad. Sci. USA 94, 9389–9393.
24. Youngs, C. G., Epp, A., Craig, B. M., and Sallans, H. R. (1956) Prepa-
ration of long-chain fatty acid chlorides. J. Am. Oil Chem. Soc. 34,
107–108.
6. WHO. 1999. Rolling back malaria. In: The World Health Report 1999:
making a difference. Geneva. Switzerland. pp. 49–63.
25. Kim, K. S. and Kim, H. S. (2004) Molecular Tweezer based on cheno-
deoxycholic acid: synthesis and anion binding properties. Bull. Korean
Chem. Soc. 25, 1411–1413.
7. Smith, S., Witkowski, A., and Joshi, A. K. (2003) Structural and func-
tional organization of the animal fatty acid synthase. Prog. Lipid Res.
42, 289–317.
26. Pidugu, L. S., Kapoor, M., Surolia, N., Surolia, A., and Suguna, K.
(2004) Structural basis for the variation in triclosan affinity to enoyl re-
ductases. J. Mol. Biol. 343, 147–155.
8. Ralph, S. A., Van Dooren, G. G., Waller, R. F., Crawford, A. F., Fraun-
holz, M., et al. (2004) Metabolic maps and functions of the Plasmodium
falciparum apicoplast. Nat. Rev. Microbiol. 2, 203–216.
27. Molecular Operating Environment [MOE 201.7], Chemical Computing
Group Inc., Montreal, Quebec, Canada, H3B 3X3.
9. Rock, C. O. and Cronan, J. E. (1996) Escherichia coli as a model for
the regulation of dissociable (type II) fatty acid biosynthesis. Biochim.
Biophys. Acta 132, 1–16.
28. Sobolev, V., Sorokine, A., Prilusky, J., Abola, E. E., and Edelmanm, M.
(1999) Automated analysis of interatomic contacts in proteins. Bioinfor-
matics 15, 327–332.
10. Surolia, N. and Surolia, A. (2001) Triclosan offers protection against
blood-stages of malaria by inhibiting enoyl-ACP reductase of Plasmo-
dium falciparum. Nat. Med. 7, 167–173.
29. Kapoor, M., Mukhi, P. L., Surolia, N., Suguna, K., and Surolia, A.
(2004) Kinetic and structural analysis of the increased affinity of enoyl-
ACP (acylcarrier protein) reductase for triclosan in the presence of
NAD1. Biochem. J. 381, 725–733.
11. Heath, R. J. and Rock, C. O. (2004) Fatty acid biosynthesis as a target
for novel antibacterials. Curr. Opin. Investig. Drugs 5, 46–53.
12. Singh, A. P., Surolia, N., and Surolia, A. (2009) Triclosan inhibit the
growth of the late liver-stage of Plasmodium. IUBMB Life. 61, 923–928.
13. Vaughan, A. M., O’Neill, M. T., Tarun, A. S., Camargo, N., Phuong, T. M.,
et al. (2009) Type II fatty acid is essential for only late liver-stage develop-
ment. Cell. Microbiol. 11, 506–520.
30. Lack, G., Homberger-Zizzari, G., Folkers, G., Scapozza, L., and Per-
ozzo, R. (2006) Recombinant expression and biochemical character-
isation of the unique elongating beta-ketoacyl-acyl carrier protein
synthase involved in fatty acid biosynthesis of Plasmodium falcipa-
rum using natural and artificial substrates. J. Biol. Chem. 281, 9538–
9546.
14. Mahmoudi, N., Ciceron, L., Franetich, J. F., Farhati, K., Silvie, O.,
et al. (2003) In vitro activities of 25 quinolones and fluoroquinolones
against liver and blood-stage Plasmodium spp. Antimicrob. Agents Che-
mother. 47, 2636–2639.
31. Karmodiya, K. and Surolia, N. (2006) Analyses of co-operative transitions
in Plasmodium falciparum beta-ketoacyl carrier protein reductase upon
co-factor and acyl carrier protein binding. FEBS J. 273, 4093–4103.
32. Sharma, S. K., Kapoor, M., Kumar, S., Kumar, G., Modak, R., Sharma,
S., Surolia, N., and Surolia, A. (2003) Identification, characterisation
and inhibition of Plasmodium falciparum ß-hydroxyacyl-acyl carrier
protein dehydratase (FabZ). J. Biol. Chem. 278, 45661–45671.
33. Suguna, K., Surolia, A., and Surolia, N. (2001) Structural basis for tri-
closan and NAD binding to enoyl-ACP reductase of Plasmodium falcip-
arum. Biochem. Biophys. Res. Commun. 283, 224–228.
15. Surolia, A., Ramya, T. N. C., Ramya, V., and Surolia, N. (2004) ‘FAS’t
inhibition of malaria. Biochem. J. 383, 410–412.
16. Chhibber, M., Kumar, G., Parasuraman, P., Ramya, T. N., and Surolia, N.,
Surolia, A. (2006) Novel diphenyl ethers: design, docking studies, synthe-
sis, and inhibition of enoyl ACP reductase of Plasmodium falciparum and
Escherichia coli. Bioorg. Med. Chem. 14, 886–898.
17. Kumar, S., Kumar, G., Kapoor, M., Surolia, A., and Surolia, N. (2006)
Synthesis and evaluation of substituted pyrazoles: potential anti-malar-
ials targeting the enoyl ACP reductase of Plasmodium falciparum.
Synth. Commun. 36, 215–226.
34. Petrash, J. M., Harter, T. M., Devine, C. S., Olins, P. O., Bhatnagar,
A., Liu, S., and Srivastava, S. K. (1992) Involvement of cysteine resi-
dues in catalysis and inhibition of human aldose reductase: Site-
directed mutagenesis of Cys-80, -298, and -303. J. Biol. Chem. 267,
24833–24840.
18. Sharma, S. K., Prasanna, P., Kumar, G., Surolia, N., and Surolia, A.
(2007) Green tea catechins potentiate triclosan binding to enoyl-ACP re-
ductase from Plasmodium falciparum (PfENR). J. Med. Chem. 50, 765–
775.
35. Suryanarayana, P., Kumar, P. A., Saraswat, M., Petrash, J. M., and
Reddy, G. B. (2004) Inhibition of aldose reductase by tannoid principles
of Emblica officinalis: implications for the prevention of sugar cataract.
Mol. Vis. 10, 148–154.
19. Malamas, M. S., Sredy, J., Moxham, C., Katz, A., Xu, W., et al. (2000)
Novel benzofuran and benzothiophene biphenyls as inhibitors of protein
tyrosine phosphatase 1B and antihyperglycemic properties. J. Med.
Chem. 43, 1293–1310.
36. Arslanian, M. J., Pascoe, E, and Reinhold, J. G. (1971) Rat liver alcohol
dehydrogenase. Purification and properties. Biochem. J. 125, 1039–1047.