(c) L. Liu, S. Zhang, F. Xue, G. Lou, H. Zhang, S. Ma, W. Duan
and W. Wang, Chem.–Eur. J., 2011, 17, 7791; (d) Q. Guo,
M. Bhanushali and C.-G. Zhao, Angew. Chem., Int. Ed., 2010,
49, 9460; (e) K. Aikawa, S. Mimura, Y. Numata and K. Mikami,
Eur. J. Org. Chem., 2011, 62; (f) K. Zheng, C. Yin, X. Liu, L. Lin and
X. Feng, Angew. Chem., Int. Ed., 2011, 50, 2573; (g) L. Yin, M. Kanai
and M. Shibasaki, Angew. Chem., Int. Ed., 2011, 50, 7620; (h) K. Shen,
X. Liu, L. Lin and X. Feng, Chem. Sci., 2011, DOI: 10.1039/c1sc00544h.
6 For our efforts in this area: (a) Y.-L. Liu, B.-L. Wang, J.-J. Cao,
L. Chen, Y.-X. Zhang, C. Wang and J. Zhou, J. Am. Chem. Soc.,
2010, 132, 15176; (b) M. Ding, F. Zhou, Y.-L. Liu, C.-H. Wang,
X.-L. Zhao and J. Zhou, Chem. Sci., 2011, 2, 2035; (c) Z.-Y. Cao,
Y. Zhang, C.-B. Ji and J. Zhou, Org. Lett., 2011, 13, 6398;
(d) Z.-Q. Qian, F. Zhou, T.-P. Du, B.-L. Wang, M. Ding,
X.-L. Zhao and J. Zhou, Chem. Commun., 2009, 6753;
(e) F. Zhou, M. Ding, Y.-L. Liu, C.-H. Wang, C.-B. Ji,
Y.-Y. Zhang and J. Zhou, Adv. Synth. Catal., 2011, 353, 2945.
7 For reaction of 3-prochiral oxindoles with electrophilic fluorinating
reagents or ethyl trifluoropyruvate: (a) N. Shibata, J. Kohno, K. Takai,
T. Ishimaru, S. Nakamura, T. Toru and S. Kanemasa, Angew. Chem.,
Int. Ed., 2005, 44, 4204; (b) Y. Hamashima, T. Suzuki, H. Takano,
Y. Shimura and M. Sodeoka, J. Am. Chem. Soc., 2005, 127, 10164;
(c) S. Ogawa, N. Shibata, J. Inagaki, S. Nakamura, T. Toru and
M. Shiro, Angew. Chem., Int. Ed., 2007, 46, 8666. For 3-CF3-3-
hydroxyoxindole from chiral synthon, see: (d) S. Ogawa, N. Iida,
E. Tokunaga, M. Shiro and N. Shibata, Chem.–Eur. J., 2010, 16, 7090.
8 (a) C. Ni, F. Wang and J. Hu, Beilstein J. Org. Chem., 2008, 4, DOI:
10.3762/bjoc.4.21; (b) M. Bandini, R. Sinisi and A. Umani-Ronchi,
Chem. Commun., 2008, 4360; (c) J. Nie, G.-W. Zhang, L. Wang,
A. Fu, Y. Zheng and J.-A. Ma, Chem. Commun., 2009, 2356. For
synthesis of chiral amines with an a-difluoroalkyl group: (d) Z. Yuan,
Y. Wei and M. Shi, Chin. J. Chem., 2010, 28, 1709; (e) W. Kashikura,
K. Mori and T. Akiyama, Org. Lett., 2011, 13, 1860; (f) Y.-L. Liu,
T.-D. Shi, F. Zhou, X.-L. Zhao, X. Wang and J. Zhou, Org. Lett.,
2011, 13, 3826; (g) M.-W. Chen, Y. Duan, Q.-A. Chen, D.-S. Wang,
C.-B. Yu and Y.-G. Zhou, Org. Lett., 2010, 12, 5075.
9 (a) H. Amii, T. Kobayashi, Y. Hatamoto and K. Uneyama, Chem.
Commun., 1999, 1323; (b) F. Chorki, F. Grellepois, B. Crousse,
M. Ourevitch, D. Bonnet-Delpon and J.-P. Begue, J. Org. Chem.,
2001, 66, 7858; (c) Z.-L. Yuan, Y. Wei and M. Shi, Tetrahedron, 2010,
66, 7361; (d) Y. Guo and J.-M. Shreeve, Chem. Commun., 2007, 3583.
10 For reviews on cinchona alkaloids, see: (a) S. K. Tian, Y. Chen,
J. Hang, L. Tang, P. McDaid and L. Deng, Acc. Chem. Res., 2004,
37, 621; (b) S. J. Connon, Chem. Commun., 2008, 2499; (c) C. Palomo,
M. Oiarbide and R. Lopez, Chem. Soc. Rev., 2009, 38, 632; (d) E. M.
O. Yeboah, S. O. Yeboah and G. S. Singh, Tetrahedron, 2011,
67, 1725; (e) T. Marcelli and H. Hiemstra, Synthesis, 2010, 1229.
11 For reviews on Brønsted acid catalysis, see: (a) T. Akiyama, Chem.
Rev., 2007, 107, 5744; (b) A. G. Doyle and E. N. Jacobsen, Chem.
Rev., 2007, 107, 5713; (c) Z. Zhang and P. R. Schreiner, Chem. Soc.
Rev., 2009, 38, 1187; see for examples: (d) L. Ratjen, P. Garcia-
Garcia, F. Lay, M. E. Beck and B. List, Angew. Chem., Int. Ed., 2011,
50, 754; (e) J. D. McGilvra, A. K. Unni, K. Modi and V. H. Rawal,
Angew. Chem., Int. Ed., 2006, 45, 6130; (f) W. Zhuang, T. B. Poulsen
and K. A. Jørgensen, Org. Biomol. Chem., 2005, 3, 3284.
Scheme 3 Proposed transition states.
quaternary ammonium salts11c,d and carboxylate-ammonium
salts,11e with counter anions as anionic Lewis base catalysts to
activate trimethylsilyl enol ethers.
Based on the absolute configuration of the product 8, a
plausible mechanism was proposed for the observed enantio-
facial control of this reaction. As shown in Scheme 3, the
activation of difluoroenoxysilane 7 by the tertiary amine in the
quinine urea catalyst backbone forms a reactive pentacoordinate
silicate12a,b to react with isatin 1 which was activated by the urea
part of the catalyst 10 through H-bonding interaction. The
bifunctional catalysis was supported by the results shown in
Table 1 (entries 4–6). Among the two possible orientations, the
isatin was organized to avoid the unfavorable interaction
between the isatin benzene ring and the enolate, which made
the attack of the enolate from the Re face of the isatin favorable
to afford the S-enantiomer as the major product.5d
In conclusion, we have developed a highly enantioselective
synthesis of 3-difluoroalkyl 3-hydroxyoxindoles. Most importantly,
the identification of nitrogen-based Lewis bases as effective catalysts
to activate difluoroenoxysilane 7 would offer the premise of a
straightforward method for the catalytic asymmetric construction
of stereogenic carbon centers featuring a difluoroalkyl group.
The financial support from the NSFC (20902025, 21172075),
Innovation Program of SMEC (12ZZ046), Shanghai Pujiang
Program (10PJ1403100), and the 973 program (2011CB808600)
is highly appreciated.
Notes and references
1 For reviews, see: (a) L. Hunter, Beilstein J. Org. Chem., 2010, 6, DOI:
10.3762/bjoc.6.38; (b) D. O’Hagan, Chem. Soc. Rev., 2008, 37, 308;
(c) J. Nie, H.-C. Guo, D. Cahard and J.-A. Ma, Chem. Rev., 2011,
111, 455; (d) G. Valero, X. Company and R. Rios, Chem.–Eur. J.,
2011, 17, 2018; (e) D. Cahard, X. Xu, S. Couve-Bonnaire and
X. Pannecoucke, Chem. Soc. Rev., 2010, 39, 558; (f) N. Shibata,
S. Mizuta and H. Kawai, Tetrahedron: Asymmetry, 2008, 19, 2633.
2 (a) J. Hu, W. Zhang and F. Wang, Chem. Commun., 2009, 7465;
(b) M. J. Tozer and T. F. Herpin, Tetrahedron, 1996, 52, 8619;
(c) G. K. S. Prakash, J. Hu, T. Mathew and G. A. Olah, Angew.
Chem., Int. Ed., 2003, 42, 5216; (d) Y. Li and J. Hu, Angew. Chem.,
Int. Ed., 2007, 46, 2489; (e) P. V. Ramachandran, A. Tafelska-
Kaczmarek and K. Sakavuyi, Org. Lett., 2011, 13, 4044.
12 (a) S. E. Denmark and G. L. Beutner, Angew. Chem., Int. Ed.,
2008, 47, 1560; (b) J. Gawronski, N. Wascinska and J. Gajewy,
Chem. Rev., 2008, 108, 5227; (c) T. Ooi and K. Maruoka, Acc.
Chem. Res., 2004, 37, 526; (d) M. Horikawa, J. Busch-Petersen and
E. J. Corey, Tetrahedron Lett., 1999, 40, 3843; (e) R. P. Singh,
B. M. Foxman and L. Deng, J. Am. Chem. Soc., 2010, 132, 9558.
13 (a) Y. Kamano, H.-P. Zhang, Y. Ihihara, H. Kizu, K. Komiyama
and G. R. Pettit, Tetrahedron Lett., 1995, 36, 2783; (b) Y. Kamano,
A. Kotake, H. Hashima, I. Hayakawa, H. Hiraide, H. Zhang,
H. Kizu, K. Komiyama, M. Hayashi and G. R. Pettit, Collect. Czech.
Chem. Commun., 1999, 64, 1147; for the first example of total
synthesis of convolutamydine E, see: (c) N. Hara, S. Nakamura,
N. Shibata and T. Toru, Chem.–Eur. J., 2009, 15, 6790.
3 (a) C. Pesenti and F. Viani, ChemBioChem, 2004, 5, 590;
(b) J. A. Erickson and J. I. McLoughlin, J. Org. Chem., 1995,
60, 1626; (c) D. B. Damon and D. J. Hoover, J. Am. Chem. Soc.,
1990, 112, 6439.
14 T. Hirose, T. Sunazuka, T. Shirahata, D. Yamamoto, Y. Harigaya,
¯
I. Kuwajima and S. Omura, Org. Lett., 2002, 4, 501.
4 (a) P. Bey, F. Gerhart, V. V. Dorsselaer and C. Danzin, J. Med.
Chem., 1983, 26, 1551; (b) N. M. F. S. A. Cerqueira,
P. A. Fernandes and M. J. Ramos, Chem.–Eur. J., 2007, 13, 8507.
5 (a) F. Zhou, Y.-L. Liu and J. Zhou, Adv. Synth. Catal., 2010, 352, 1381;
(b) S. Peddibhotla, Curr. Bioact. Compd., 2009, 5, 20; Also see:
15 (a) T. Mukaiyama, Angew. Chem., Int. Ed., 2004, 43, 5590;
(b) S. Adachi and T. Harada, Eur. J. Org. Chem., 2009, 3661;
(c) M. Bella and T. Gasperi, Synthesis, 2009, 1583; For the only example
of addition of trichlorosilyl enolates to ketones, see: (d) S. E. Denmark,
Y. Fan and M. D. Eastgate, J. Org. Chem., 2005, 70, 5235.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 1919–1921 1921