10.1002/anie.201704184
Angewandte Chemie International Edition
COMMUNICATION
O
Ed. 2014, 53, 8722–8726; e) R. Bigler, R. Huber, A. Mezzetti, Angew.
Chem. Int. Ed. 2015, 54, 5171–5174.
H
BPin
R3SiOR*
Ar
LigMn
H
PinB-OR*
S
O(
)
I
H
O
IV
III
Ar
σ
[5]
a) W. Zhang, J. L. Loebach, S. R. Wilson, E. N. Jacobsen, J. Am.
Chem. Soc. 1990, 112, 2801–2803; b) T. Katsuki, Coord. Chem. Rev.
1995, 140, 189–214; c) S. Liao, B. List, Angew. Chem. Int. Ed. 2010, 49,
628–631; d) S. M. Paradine, J. R. Griffin, J. Zhao, A. L. Petronico, S. M.
Miller, M. Christina White, Nat. Chem. 2015, 7, 1–8; e) D. Shen, C.
Saracini, Y.-M. Lee, W. Sun, S. Fukuzumi, W. Nam, J. Am. Chem. Soc.
2016, 138, 15857–15860.
coordination
LigMn
H transfer
-bond
metathesis
O
B
Ar
H
O
O
H
Ar
-H
LigMn
LigMn
"fast"
"slow"
hydroboration
hydrosilylation
transfer
borane-mediated
transfer
direct
II
H transfer
coordination
coordination
σ
II
I
-bond
HBPin
metathesis
H
O
O
LigMn
III
H
B
LigMn
R
)
O(
O
H
[6]
[7]
[8]
T. K. Mukhopadhyay, M. Flores, T. L. Groy, R. J. Trovitch, J. Am. Chem.
Soc. 2014, 136, 882–885.
Ar
Ar
R3SiH
G. Zhang, H. Zeng, J. Wu, Z. Yin, S. Zheng, J. C. Fettinger, Angew.
Chem. Int. Ed. 2016, 55, 14369–14372.
Scheme 5. Tentative mechanistic proposal for the manganese-catalyzed
hydroboration and hydcrosilylation of ketones.
a) S. Elangovan, C. Topf, S. Fischer, H. Jiao, A. Spannenberg, W.
Baumann, R. Ludwig, K. Junge, M. Beller, J. Am. Chem. Soc. 2016,
138, 8809–8814; b) S. Elangovan, M. Garbe, H. Jiao, A. Spannenberg,
K. Junge, M. Beller, Angew. Chem. Int. Ed. 2016, 55, 15364–15368;
c) M. Peña-López, P. Piehl, S. Elangovan, H. Neumann, M. Beller,
Angew. Chem. Int. Ed. 2016, 55, 14967–14971; d) S. Elangovan, J.
Neumann, J.-B. Sortais, K. Junge, C. Darcel, M. Beller, Nat. Commun.
2016, 7, 12641; e) Andérez-Fernández, M.; Vogt, L. K.; Fischer, S.;
Zhou, W.; Jiao, H.; Garbe, M.; Elangovan, S.; Junge, K.; Junge, H.;
Ludwig, R.; Beller, M. Angew. Chem. Int. Ed. 2016, 56, 559–562;
f) Neumann, A. J.; Elangovan, S.; Spannenberg, A.; Junge, K.; Beller,
M. Chem. Eur. J. 2017, 23, 5410–5413; g) Papa, V.; Cabrero-Antonino,
J. R.; Alberico, E.; Spannenberg, A.; Junge, K.; Junge, H.; Beller, M.
Chem. Sci. 2017, 8, 3576–3585.
In conclusion, we have developed a manganese(II)-based
molecular catalyst for the stereoselective reduction of a broad
range of ketone substrates under very mild conditions. In
contrast to other active Mn catalysts that most likely operate
through a radical mechanism,[6] preliminary experiments indicate
that boxmi manganese complexes are expected to facilitate a
heterolytic rather than a homolytic bond activation. Our system
provides an example of the potential of enantioselective base
metal catalysis and, in particular, the applicability of manganese
catalysts in organic synthesis. It also highlights the role of
enantiodivergent mechanistic pathways for enantioselective 3d
metal catalysis.
[9]
a) Kallmeier, F.; Irrgang, T.; Dietel, T.; Kempe, R. Angew. Chem. Int.
Ed. 2016, 55 (39), 11806–11809; b) Deibl, N.; Kempe, R. Angew.
Chem. Int. Ed. 2017, 56, 1663–1666.
[10] a) Mastalir, M.; Glatz, M.; Gorgas, N.; Stöger, B.; Pittenauer, E.;
Allmaier, G.; Veiros, L. F.; Kirchner, K. Chem. Eur. J. 2016, 22 (35),
12316–12320; b) Mastalir, M.; Glatz, M.; Pittenauer, E.; Allmaier, G.;
Kirchner, K. J. Am. Chem. Soc. 2016, 138 (48), 15543–15546;
c) Mastalir, M.; Glatz, M.; Stöger, B.; Weil, M.; Pittenauer, E.; Allmaier,
G.; Kirchner, K. Inorg. Chim. Acta 2017, 455, 707–714.
Acknowledgements
We acknowledge the award of a predoctoral fellowship to V. V.
from the Landesgraduiertenförderung of the state of Baden-
Württemberg and generous funding by the University of
Heidelberg as well as the Deutsche Forschungsgemeinschaft
(DFG-Ga488/9-1). The authors thank Dr. Torsten Roth for
helpful suggestions.
[11] a) A. Nerush, M. Vogt, U. Gellrich, G. Leitus, Y. Ben-David, D. Milstein,
J. Am. Chem. Soc. 2016, 138, 6985–6997; b) A. Mukherjee, A. Nerush,
G. Leitus, L. J. W. Shimon, Y. Ben David, N. A. Espinosa Jalapa, D.
Milstein, J. Am. Chem. Soc. 2016, 138, 4298–4301; c) Espinosa-Jalapa,
N. A.; Nerush, A.; Shimon, L.; Leitus, G.; Avram, L.; Ben-David, Y.;
Milstein, D. Chem. Eur. J. 2017, 23, 5934–5938.
Keywords: enantioselective catalysis • hydroboration •
[12] a) J. Zheng, S. Elangovan, D. A. Valyaev, R. Brousses, V. César, J.-B.
B. Sortais, C. Darcel, N. Lugan, G. Lavigne, Adv. Synth. Catal. 2014,
356, 1093–1097; b) V. K. Chidara, G. Du, Organometallics 2013, 32,
5034–5037; c) Nguyen, D. H.; Trivelli, X.; Capet, F.; Paul, J.-F.;
Dumeignil, F.; Gauvin, R. M. ACS Catal. 2017, 7, 2022–2032.
reduction • manganese • enantiodivergence
[1]
a) V. L. Schramm, F. C. Wedler, Manganese in Metabolism and
Enzyme Function, Academic Press, 1986; b) W. Kaim, B. Schwederski,
A. Klein, Bioinorganic Chemistry: Inorganic Elements in the Chemstry
of Life, 2013; c) J. D. Crowley, D. A. Traynor, D. C. Weatherburn, Met.
Ions Biol. Syst. 2000, 37, 209–78; d) J. Rittle, M. T. Green, Science
2010, 330, 933–7.
[13] a) Zirakzadeh, A.; de Aguiar, S. R. M. M.; Stöger, B.; Widhalm, M.
ChemCatChem 2017, DOI: 10.1002/cctc.201700042; b) M. B.
Widegren, G. J. Harkness, A. M. Z. Slawin, D. B. Cordes, M. L. Clarke,
Angew. Chem. Int. Ed. 2017, DOI 10.1002/anie.201702406.
[14] a) T. Bleith, H. Wadepohl, L. H. Gade, J. Am. Chem. Soc. 2015, 137,
2456–2459; b) T. Bleith, L. H. Gade, J. Am. Chem. Soc. 2016, 138,
4972–4983.
[2]
[3]
M. Yoshimura, S. Tanaka, M. Kitamura, Tetrahedron Lett. 2014, 55,
3635–3640.
a) E. Rose, B. Andrioletti, S. Zrig, M. Quelquejeu-Ethève, Chem. Soc.
Rev. 2005, 34, 573; b) F. G. Gelalcha, B. Bitterlich, G. Anilkumar, M. K.
Tse, M. Beller, Angew. Chem. Int. Ed. 2007, 46, 7293–7296; c) T. Niwa,
M. Nakada, J. Am. Chem. Soc. 2012, 134, 13538–13541; d) Cussó, X.
Ribas, J. Lloret-Fillol, M. Costas, Angew. Chem. Int. Ed. 2015, 54,
2729–2733; e) O. Cussó, M. Cianfanelli, X. Ribas, R. J. M. Klein
Gebbink, M. Costas, J. Am. Chem. Soc. 2016, 138, 2732–2738.
a) C. P. Casey, H. Guan, J. Am. Chem. Soc. 2007, 129, 5816–5817;
b) G. Bauer, K. A. Kirchner, Angew. Chem. Int. Ed. 2011, 50, 5798–
5800; c) W. Zuo, A. J. Lough, Y. F. Li, R. H. Morris, Science 2013, 342,
1080–1083; d) S. Werkmeister, K. Junge, B. Wendt, E. Alberico, H.
Jiao, W. Baumann, H. Junge, F. Gallou, M. Beller, Angew. Chem. Int.
[15] a) Q. H. Deng, H. Wadepohl, L. H. Gade, Chem. - A Eur. J. 2011, 17,
14922–14928; b) Q. H. Deng, H. Wadepohl, L. H. Gade, J. Am. Chem.
Soc. 2012, 134, 2946–2949; c) Q. H. Deng, H. Wadepohl, L. H. Gade, J.
Am. Chem. Soc. 2012, 134, 10769–10772; d) Q. H. Deng, T. Bleith, H.
Wadepohl, L. H. Gade, J. Am. Chem. Soc. 2013, 135, 5356–5359;
e) Q. H. Deng, C. Rettenmeier, H. Wadepohl, L. H. Gade, Chem. - A
Eur. J. 2014, 20, 93–97; f) T. Bleith, Q. H. Deng, H. Wadepohl, L. H.
Gade, Angew. Chem. Int. Ed. 2016, 55, 7852–7856.
[4]
[16] For a selection of other recent transition metal catalyzed hydroborations
see for example: a) Guo, J.; Chen, J.; Lu, Z. Chem. Commun. 2015, 51
(26), 5725–5727; b) Weidner, V. L.; Barger, C. J.; Delferro, M.; Lohr, T.
L.; Marks, T. J. ACS Catal. 2017, 7, 1244–1247.
This article is protected by copyright. All rights reserved.