Journal of the American Chemical Society
Page 6 of 8
Synthesis of Axially Chiral Biaryls by Palladium-Catalyzed Asymmetric
(18) (a) Dheer, D.; Singh, V.; Shankar, R. Medicinal Attributes of 1,2,3-
Triazoles: Current Developments. Bioorg. Chem. 2017, 71, 30–54. (b)
Agalave, S. G.; Maujan, S. R.; Pore, V. S. Click Chemistry: 1,2,3-Triazoles as
Pharmacophores. Chem. Asian J. 2011, 6, 2696–2718. (c) Lau, Y. H.; Rutledge,
P. J.; Watkinson, M.; Todd, M. H. Chemical Sensors that Incorporate Click-
Derived Triazoles. Chem. Soc. Rev. 2011, 40, 2848–2866. (d) Angell, Y. L.;
Burgess, K. Peptidomimetics via Copper-Catalyzed Azide-Alkyne
Cycloadditions. Chem. Soc. Rev. 2007, 36, 1674–1689.
C–H Olefination Enabled by a Transient Chiral Auxiliary. Angew. Chem.
Int. Ed. 2017, 56, 6617-6621. (e) Zhang, S.; Yao, Q.-J.; Liao, G.; Li, X.; Li,
H.; Chen, H.-M.; Hong, X.; Shi, B.-F. Enantioselective Synthesis of
Atropisomers Featuring Pentatomic Heteroaromatics by Pd-Catalyzed
C–H Alkynylation. ACS Catal. 2019, 9, 1956–1961.
1
2
3
4
(13) For
a selected examples on asymmetric Suzuki−Miyaura
5
6
7
8
reactions to form (hetero)biaryl axis: (a) Yin, J. J.; Buchwald, S. L. A
Catalytic Asymmetric Suzuki Coupling for the Synthesis of Axially
Chiral Biaryl Compounds. J. Am. Chem. Soc. 2000, 122, 12051–12052.
(b) Shen, X.; Jones, G. O.; Watson, D. A.; Bhayana, B.; Buchwald, S. L.
Enantioselective Synthesis of Axially Chiral Biaryls by the Pd-Catalyzed
Suzuki-Miyaura Reaction: Substrate Scope and Quantum Mechanical
Investigations. J. Am. Chem. Soc. 2010, 132, 11278–11287. (c) Wang, S.;
Li, J.; Miao, T.; Wu, W.; Li, Q.; Zhuang, Y.; Zhou, Z.; Qiu, L.-Q. Highly
Efficient Synthesis of a Class of Novel Chiral-Bridged Atropisomeric
Monophosphine Ligands via Simple Desymmetrization and Their
Applications in Asymmetric Suzuki-Miyaura Coupling Reaction. Org.
Lett. 2012, 14, 1966–1969. (d) Zhou, Y.; Zhang, X.; Liang, H.; Cao, Z.;
Zhao, X.; He, Y.; Wang, S.; Pang, J.; Zhou, Z.; Ke, Z.; Qiu, L.-Q.
Enantioselective Synthesis of Axially Chiral Biaryl Monophosphine
Oxides via Direct Asymmetric Suzuki Coupling and DFT Investigations
of the Enantioselectivity. ACS Catal. 2014, 4, 1390–1397. (e) Patel, N.
D.; Sieber, J. D.; Tcyrulnikov, S.; Simmons, B. J.; Rivalti, D.; Duvvuri, K.;
Zhang, Y.; Gao, D. A.; Fandrick, K. R.; Haddad, N.; Lao, K. S.; Mangunuru,
H. P. R.; Biswas, S.; Qu, B.; Grinberg, N.; Pennino, S.; Lee, H.; Song, J. J.;
Gupton, B. F.; Garg, N. K.; Kozlowski, M. C.; Senanayake, C. H.
Computationally Assisted Mechanistic Investigation and Development
of Pd-Catalyzed Asymmetric Suzuki-Miyaura and Negishi Cross-
Coupling Reactions for Tetra-ortho-Substituted Biaryl Synthesis. ACS
Catal. 2018, 8, 10190–10209. (f) Shen, D.; Xu, Y.; Shi, S. A Bulky Chiral
N-Heterocyclic Carbene Palladium Catalyst Enables Highly
Enantioselective Suzuki−Miyaura Cross-Coupling Reactions for the
Synthesis of Biaryl Atropisomers. J. Am. Chem. Soc. 2019, 141, 14938–
14945.
(19) (a) Etayo, P.; Escudero-Adán, E. C.; Pericàs, M. A. 5,5′-Bistriazoles as
Axially Chiral, Multidentate Ligands: Synthesis, Configurational Stability and
Catalytic Application of their Scandium(III) Complexes. Catal. Sci. Technol.
2017, 7, 4830–4841. (b) Goyard, D.; Chajistamatiou, A. S.; Sotiropoulou, A. I.;
Chrysina, E. D.; Praly, J.-P.; Vidal, S. Efficient Atropodiastereoselective Access
to 5,5’-Bis-1,2,3-triazoles: Studies on 1-Glucosylated 5-Halogeno 1,2,3-
Triazoles and their 5-Substituted Derivatives as Glycogen Phosphorylase
Inhibitors. Chem. Eur. J. 2014, 20, 5423–5432.
(20) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V., Sharpless, K. B. A Stepwise
Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective
“Ligation” of Azides and Terminal Alkynes. Angew. Chem. Int. Ed. 2002, 41,
2596–2599.
(21)(a)Chuprakov, S.;Chernyak, N.;Dudnik, A. S.;Gevorgyan, V. DirectPd-
Catalyzed Arylation of 1,2,3-Triazoles. Org. Lett. 2007, 9, 2333–2336. (b)
Iwasaki, M.; Yorimitsu, H.; Oshima, K. Microwave-Assisted Palladium-
Catalyzed Direct Arylation of 1,4-Disubstituted 1,2,3-Triazoles with
Aryl Chlorides. Chem. Asian J. 2007, 2, 1430–1435. (c) Ackermann, L.;
Vicente, R.; Born, R. Palladium-Catalyzed Direct Arylations of 1,2,3-
Triazoles with Aryl Chlorides using Conventional Heating. Adv. Synth.
Catal. 2008, 350, 741–748. (d) Zhang. C.; You, L.; Chen, C. Palladium-
Catalyzed C–H Arylation of 1,2,3-Triazoles. Molecules, 2016, 21, 1268–
1274.
(22) Rickhaus, M.; Jundt, L.; Mayor, M. Determining Inversion
Barriers in Atropisomers – A Tutorial for Organic Chemists. Chimia
2016, 70, 192–202.
(23) Hayashi, T. Chiral Monodentate Phosphine Ligand MOP for
Transition-Metal-Catalyzed Asymmetric Reactions. Acc. Chem. Res. 2000, 33,
354–362.
(24) Yang, L.; Neuburger, M.; Baudoin, O. Chiral Bifunctional Phosphine-
Carboxylate Ligands for Palladium(0)-Catalyzed Enantioselective C–H
Arylation. Angew. Chem. Int. Ed. 2018, 57, 1394–1398.
(25) (a) Ji, Y.; Plata, R.-E.; Regens, C. S.; Hay, M.; Schmidt, M.; Razler, T.; Qiu,
Y.; Geng, P.; Hsiao, Y.; Rosner, T.; Eastgate, M. D.; Blackmond, D. G. Mono-
Oxidation of Bidentate Bis-phosphines in Catalyst Activation: Kinetic and
Mechanistic Studies of a Pd/ Xantphos-Catalyzed C−H Functionalization. J.
Am. Chem. Soc. 2015, 137, 13272–13281. (b) Mayer, C.; Ladd, C. L.; Charette,
A. B. Utilization of BozPhos as an Effective Ligand in Enantioselective C−H
Functionalization of Cyclopropanes: Synthesis of Dihydroisoquinolones and
Dihydroquinolones. Org. Lett. 2019, 21, 2639–2644.
(26) (a) Grushin, V. V. Catalysis for Catalysis: Synthesis of Mixed
Phosphine−Phosphine Oxide Ligands via Highly Selective, Pd-
Catalyzed Monooxidation of Bidentate Phosphines. J. Am. Chem. Soc.
1999, 121, 5831–5832. (b) Grushin, V. V. Synthesis of Hemilabile
Phosphine-Phosphine Oxide Ligands via the Highly Selective Pd-
Catalyzed Mono-oxidation of Bidentate Phosphines: Scope, Limitations,
and Mechanism. Organometallics 2001, 20, 3950–3961.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(14) (a) Yamaguchi, K.; Yamaguchi, J.; Studer, A.; Itami, K. Hindered
Biaryls by C–H Coupling: Bisoxazoline-Pd Catalysis Leading to
Enantioselective C–H Coupling. Chem. Sci. 2012, 3, 2165–2169. (b)
Yamaguchi, K.; Kondo, H.; Yamaguchi, J.; Itami, K. Aromatic C–H
Coupling with Hindered Arylboronic Acids by Pd/Fe Dual Catalysts.
Chem. Sci. 2013, 4, 3753–3757.
(15)Newton,C.G.;Braconi,E.;Kuziola,J.;Wodrich,M.D.;Cramer,N.Axially
Chiral Dibenzazepinones by
a
Palladium(0)-Catalyzed Atropo-
enantioselective C–H Arylation. Angew. Chem. Int. Ed. 2018, 57, 11040–
11044.
(16) (a) Newton, C. G.; Wang, S.-G.; Oliveira, C. C.; Cramer, N. Catalytic
Enantioselective Transformations Involving C−H Bond Cleavage by
Transition-Metal Complexes. Chem. Rev. 2017, 117, 8908–8976. (b) Saint-
Denis, T. G.; Zhu, R.-Y.; Chen, G.; Wu, Q.-F.; Yu, J.- Q. Enantioselective
C(sp3)−H bond activation by chiral transition metal catalysts. Science
2018, 359, eaao4798. (c) Woźniak, Ł.; Cramer, N. Enantioselective CH
Bond Functionalizations by 3d Transition-Metal Catalysts. Trends Chem.
2019, 1, 471–484. (d) Loup, J.; Dhawa, U.; Pesciaioli, F.; Wencel-Delord, J.;
Ackermann, L. Enantioselective C−H Activation with Earth-Abundant 3d
Transition Metals. Angew. Chem. Int. Ed. 2019, 58, 12803–12818. (e) Zhang,
Q.; Shi, B.-F. From Reactivity and Regioselectivity to Stereoselectivity: An
Odyssey of Designing PIP Amine and Related Directing Groups for C-H
Activation. Chin. J. Chem. 2019, 37, 647–656. (f) Diesel, J.; Cramer, N.
Generation of Heteroatom Stereocenters by Enantioselective C–H
Functionalization. ACS Catal. 2019, 9, 9164–9177.
(17) (a) Yang, L.; Melot, R.; Neuburger, M.; Baudoin, O. Palladium(0)-
Catalyzed Asymmetric C(sp3)–H Arylation Using a Chiral Binol-Derived
Phosphate and an Achiral Ligand. Chem. Sci. 2017, 8, 1344-1349. (b) Lin, W.;
Zhang, K.-F.; Baudoin, O. Regiodivergent enantioselective C–H
functionalization of Boc-1,3-oxazinanes for the synthesis of β2- and β3-amino
acids. Nat. Catal., 2019, 2, 882–888. (c) Grosheva, D.; Cramer, N. Ketene
Aminal Phosphates: Competent Substrates for Enantioselective Pd(0)-
Catalyzed C-H Functionalizations. ACS Catal. 2017, 7, 7417-7420. (d)
Pedroni, J.; Cramer, N. Enantioselective C-H Functionalization-Addition
Sequence Delivers Densely Substituted 3-Azabicyclo[3.1.0]hexanes. J. Am.
Chem. Soc. 2017, 139, 12398-12401. (e) Grosheva, D.; Cramer, N.
Enantioselective Access to 1H-Isoindoles with Quaternary Stereogenic
Centers by Palladium(0)-Catalyzed C−H Functionalization. Angew. Chem. Int.
Ed. 2018, 57, 13644–13647.
(27) Batuecas, M; Luo, J.; Gergelitsová, I.; Kr mer, K.; Whitaker, D.;
Vitorica-Yrezabal, I. J.; Larrosa, I. Catalytic Asymmetric C−H Arylation
of (η6 Arene)Chromium Complexes: Facile Access to Planar-Chiral
Phosphines. ACS Catal. 2019, 9, 5268–5278.
(28) Crystallographic data for 3aa, 3am, 3la and 3ma: CCDC
1962752, 1962753, 1962754 and 1962755 contain the supplementary
crystallographic data and can be obtained free of charge from The
Cambridge
Crystallographic
Data
Centre
via
(29) (a) Fuestero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuestes,
A. From 2000 to Mid-2010: A Fruitful Decade for the Synthesis of
Pyrazoles. Chem. Rev. 2011, 111, 6984–7034. (b) Lambert, C. Pyrazole
Chemistry in Crop Protection. Heterocycles 2007, 71, 1467–1502. (c)
Keri, R. S.; Chand, K.; Ramakrishnappa, T.; Nagaraja, B. M. Recent
Progress on Pyrazole Scaffold-Based Antimycobacterial Agents. Arch.
Pharm. Chem. Life Sci. 2015, 348, 299–314. (d) Kaur, K.; Kumar, V.;
Gupta, G. K. Trifluoromethylpyrazoles as Anti-inflammatory and
Antibacterial Agents: A Review. J. Fluorine Chem. 2015, 178, 306–326.
(30) Dherbassy, Q.; Djukic, J.-P.; Wencel-Delord, J.; Colobert, F. Two
stereoinduction events in one C–H activation step: a route towards
ACS Paragon Plus Environment