M. Han, H.-Y. Zhang, L.-X. Yang, Z.-J. Ding, R.-J. Zhuang, Y. Liu
FULL PAPER
(MgSO4), and the solvent was evaporated. The residue was sub-
jected to column chromatography on silica gel (CHCl3/methanol,
10:1) to obtain 15. H NMR (400 MHz, CDCl3): δ = 3.48 (s, 1 H,
Synthesis of 3: A solution of 9 (60 mg, 0.05 mmol) in dry CHCl3
(50 mL) was stirred vigorously at room temperature under N2. To
this was added dropwise a solution of 15-H·PF6 (45 mg,
1
NH), 3.69 (t, 4 H, Hg), 3.73–3.75 (m, 8 H, Hh + Hf), 3.78 (t, 4 H, 0.05 mmol) in dry acetonitrile (5 mL). The reaction mixture was
Hi), 3.84 (t, 4 H, Hm), 3.89 (t, 4 H, He), 4.10 (t, 4 H, Hj), 5.29 (s, stirred at room temperature overnight. After the solvent had been
2 H, OH), 6.15 (t, 2 H, Hb), 6.41 (d, 4 H, Ha + Hd), 6.84 (d, J =
removed in vacuo, the crude product was purified by column
8.8 Hz, 4 H, Hk), 7.06 (t, 2 H, Hc), 7.20 (d, J = 8.8 Hz, 4 H, Hl) chromatography on basic alumina (CHCl3) to afford 3 (25 mg,
ppm. ESI-MS: m/z = 678.29 [M + H]+. After a protonation and
ion-exchange process, 15-H·PF6 was afforded as white precipitate
(0.71 g, total yield 82%). H NMR (400 MHz, CD3CN): δ = 3.66–
25%) as a purple solid. 1H NMR (400 MHz, CDCl3): δ = 1.20–
1.43 (m, 4 H, Ha + Hb), 2.80–4.83 (m, 48 H, –OCH2CH2O–), 4.50–
4.90 (m, 2 H, Hm), 5.19–5.60 (m, 4 H, Hd + Hc), 6.85–7.00 (m, 6
1
3.70 (m, 8 H, Hg + Hh), 3.76–3.80 (m, 8 H, Hf + Hi), 4.04–4.10 H, Hk + Ph-H), 7.10 (d, J = 8.4 Hz, 2 H, Hl), 7.14 (d, J = 8.4 Hz,
(m, 4 H, Hm), 4.12–4.20 (m, 8 H, He + Hj), 6.37–6.45 (m, 6 H, Ha
1 H, Ph-H), 7.33 (d, J = 8.4 Hz, 2 H, Hk), 7.55 (d, J = 8.4 Hz, 2
+ Hb + Hd), 6.98 (d, J = 8.8 Hz, 4 H, Hk), 7.10 (t, 2 H, Hc), 7.39
H, Hl), 7.75–7.90 (m, 11 H, Ph-H), 8.12–8.14 (m, 2 H, Ph-H), 8.34–
(d, J = 8.4 Hz, 4 H, Hl) ppm. 13C NMR (100 MHz, CD3CN): δ = 8.45 (m, 4 H, Ph-H), 8.90–9.22 (m, 8 H, β-H) ppm. 13C NMR
160.36, 160.07, 158.35, 132.09, 130.35, 122.68, 115.05, 108.04,
106.15, 101.96, 101.92, 70.59, 70.55, 69.54, 69.42, 67.79, 67.45 ppm.
(100 MHz, CD3CN): δ = 161.2, 160.1, 159.1, 158.4, 158.4, 148.3,
148.1, 148.0, 147.2, 147.8, 147.6, 141.5, 141.4, 141.3, 135.8, 135.7,
135.6, 135.5, 133.8, 133.7, 133.0, 132.7, 132.2, 132.1, 131.9, 131.0,
129.8, 129.7, 128.3, 128.2, 128.2, 127.5, 123.0, 122.7, 122.1, 116.5,
115.9, 111.0, 108.8, 107.0, 103.8, 102.7, 72.1, 71.8, 71.6, 71.4, 71.4,
71.3, 71.2, 71.0, 70.6, 70.3, 70.3, 70.1, 68.9, 68.7, 68.3, 67.6,
67.4 ppm. HRMS (ESI): calcd. for C100H100N5O18Sn [3-PF6]+
1778.6107; found 1778.612.
ESI-MS: m/z
=
678.4 [15-H]+. HRMS (ESI): calcd. for
C38H48NO10 [15-H]+ 678.328; found 678.327.
Synthesis of 1: A solution of 6 (57 mg, 0.07 mmol) in dry CHCl3
(50 mL) was stirred vigorously at room temperature under N2. To
this was added dropwise
a solution of 15-H·PF6 (50 mg,
0.07 mmol) in dry acetonitrile (5 mL). The reaction mixture was
stirred at room temperature overnight. After the solvent had been
removed in vacuo, the crude product was purified by column
chromatography on basic alumina (CHCl3) to afford 1 (30 mg,
30%) as a purple solid. 1H NMR (400 MHz, CDCl3): δ = 1.30–
1.50 (m, 4 H, Ha + Hb), 3.16 (s, 4 H, He), 3.45 (s, 4 H, Hf), 3.56
(s, 4 H, Hg), 3.62 (s, 4 H, Hh), 3.68 (s, 4 H, Hi), 3.77 (s, 4 H, Hm),
4.03 (s, 4 H, Hj), 5.39 (d, J = 6.0 Hz, 2 H, Hc), 5.53 (d, J = 7.2 Hz,
2 H, Hd), 6.80–6.90 (m, 4 H, Hk), 7.10–7.25 (m, 2 H, Hl), 7.70–
7.90 (m, 12 H, Ph-H), 8.10–8.30 (m, 8 H, Ph-H), 9.05–9.20 (m, 8
H, β-H) ppm. 13C NMR (100 MHz, CDCl3): δ = 157.3, 155.9,
147.5, 147.1, 141.2, 141.0, 135.2, 135.1, 135.0, 132.8, 132.7, 132.1,
128.7, 128.6, 128.5, 127.2, 127.2, 127.0, 126.5, 126.5, 122.0, 115.1,
115.0, 114.8, 110.6, 110.6, 110.6, 104.1, 103.6, 71.1, 71.0, 70.87,
69.97, 69.94, 69.78, 69.74, 67.9, 67.8, 67.7, 67.6, 66.5, 66.5 ppm.
HRMS (ESI): calcd. for C82H74N5O10Sn [1-PF6]+ 1408.4473; found
1408.448.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures and characterization for all com-
pounds, absorption spectra and emission spectra of porphyrin de-
rivatives.
Acknowledgments
This work was supported by the 973 Program (2011CB932500) of
the National Natural Science Foundation of China (NSFC) (Nos.
20932004, 20772063, and 20972077).
[1] a) J.-P. Sauvage, C. Dietrich-Buchecker, Molecular Catenanes,
Rotaxanes and Knots, Wiley-VCH, Weinheim, 1999; b) S. W.
Hansen, J. C. Huffman, F. Jensen, A. H. Flood, J. O. Jeppesen,
J. Am. Chem. Soc. 2007, 129, 7354–7363; c) D. A. Leigh, P. J.
Lusby, A. M. Z. Slawin, D. B. Walker, Angew. Chem. 2005, 117,
4633; Angew. Chem. Int. Ed. 2005, 44, 4557–4564; d) X. Z. Zhu,
C. F. Chen, J. Am. Chem. Soc. 2005, 127, 13158–13159; e) J.
Wu, F. Fang, W.-Y. Lu, J.-L. Hou, C. Li, Z.-Q. Wu, X.-K.
Jiang, Z.-T. Li, Y.-H. Yu, J. Org. Chem. 2007, 72, 2897–2905;
f) Y. Liu, A. Bruneau, J. M. He, Z. Abliz, Org. Lett. 2008, 10,
765–768.
[2] a) D.-H. Qu, H. Tian, Chem. Sci. 2011, 2, 1011–1015; b) X.
Ma, H. Tian, Chem. Soc. Rev. 2010, 39, 70–80; c) D. B. Amabil-
ino, J. F. Stoddart, Chem. Rev. 1995, 95, 2725–2828; d) F.
Vögtle, T. Dunnwald, T. Schmidt, Acc. Chem. Res. 1996, 29,
451–460; e) S. J. Li, M. Liu, B. Zheng, K. L. Zhu, F. Wang, N.
Li, X. L. Zhao, F. H. Huang, Org. Lett. 2009, 11, 3350–3353;
f) W. Jiang, H. D. F. Winkler, C. A. Schalley, J. Am. Chem. Soc.
2008, 130, 13852–13853; g) G. Gatti, S. Leο´n, J. K. Y. Wong,
G. Bottari, A. Altieri, M. A. F. Morales, S. J. Teat, C. Frochot,
D. A. Leigh, A. M. Brouwer, F. Zerbetto, Proc. Natl. Acad. Sci.
USA 2003, 100, 10–14; h) M. Alvarez-Pérez, S. M. Goldup,
D. A. Leigh, A. M. Z. Slawin, J. Am. Chem. Soc. 2008, 130,
1836–1838.
Synthesis of 2: A solution of 6 (50 mg, 0.065 mmol) and dibenzo-
24-crown-8 (88 mg, 0.20 mmol) in dry CHCl3 (50 mL) was stirred
vigorously at room temperature under N2. To this was added drop-
wise a solution of 15-H·PF6 (54 mg, 0.065 mmol) in dry acetonitrile
(5 mL). The reaction mixture was stirred at room temperature over-
night. After the solvent had been removed in vacuo, the crude
product was purified by column chromatography on basic alumina
(CHCl3) to afford 2 (25 mg, 21%) as a purple solid. 1H NMR
(400 MHz, CDCl3): δ = 1.20–1.40 (m, 4 H, Ha + Hb), 3.00–3.10
(m, 4 H, –OCH2CH2O–), 3.15–3.30 (m, 8 H, –OCH2CH2O–), 3.45–
3.65 (m, 14 H, –OCH2CH2O–), 3.70–3.80 (m, 6 H, –OCH2-
CH2O–), 3.80–4.00 (m, 12 H, –OCH2CH2O–), 4.10–4.20 (m, 4 H,
Hj), 4.20–4.30 (m, 4 H, Hm), 5.35–5.55 (m, 4 H, Hd + Hc), 6.35–
6.41 (m, 2 H, Hk), 6.47–6.50 (m, 2 H, Hl), 6.66–6.70 (m, 2 H, Hk),
6.87–7.10 (m, 10 H, Hl + Ph-H), 7.78–7.90 (m, 12 H, Ph-H), 8.09–
8.20 (m, 4 H, Ph-H), 8.30–8.40 (m, 4 H, Ph-H), 9.04–9.16 (m, 8 H,
β-H) ppm. 13C NMR (100 MHz, CDCl3): δ = 159.6, 159.5, 157.3,
156.1, 156.0, 149.3, 147.7, 147.5, 147.4, 147.3, 147.1, 141.1, 141.1,
141.0, 141.0, 135.3, 135.2, 135.1, 133.1, 133.0, 132.9, 132.8, 132.8,
132.7, 130.9, 130.7, 128.7, 128.6, 128.6, 127.3, 127.2, 126.5, 124.0,
122.0, 121.9, 121.8, 121.8, 115.1, 115.0, 114.8, 114.6, 113.0, 112.7,
110.6, 110.5, 104.0, 103.6, 71.1, 70.9, 70.8, 70.5, 70.3, 70.0, 69.8,
69.7, 69.6, 69.3, 69.2, 68.4, 68.4, 68.1, 67.7, 67.6, 66.7, 66.5 ppm.
HRMS (ESI): calcd. for C106H106N5O18Sn [2-PF6]+ 1856.6579;
found 1856.649.
[3] a) J.-P. Sauvage, Acc. Chem. Res. 1990, 23, 319–327; b) O. Lu-
kin, F. Vögtle, Angew. Chem. 2005, 117, 1480; Angew. Chem.
Int. Ed. 2005, 44, 1456–1477.
[4] a) K. S. Chichak, S. J. Cantrill, A. R. Pease, S.-H. Chiu,
G. W. V. Cave, J. L. Atwood, J. F. Stoddart, Science 2004, 304,
1308–1312; b) J. S. Siegel, Science 2004, 304, 1256–1258; c)
C. A. Schalley, Angew. Chem. 2004, 116, 4499; Angew. Chem.
Int. Ed. 2004, 43, 4399–4401; d) K. S. Chichak, S. J. Cantrill,
7276
www.eurjoc.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2011, 7271–7277