K. Sudhakar et al. / Tetrahedron Letters 53 (2012) 991–993
993
shifted.17 The emission spectra of both free-base and its copper(III)
derivatives of carboxy corroles were measured in CH2Cl2 solvent at
room temperature. The emission maxima of all 3-carboxy corroles
are red shifted by 5–13 nm, when compared to those of its corre-
sponding parent triaryl corroles. The singlet state (E0–0) energies
of free-base carboxy corroles are in the range of 1.85 0.05 eV
and that of its copper derivatives are 1.92 0.05 eV. The redox
potentials of both free-base and Cu(III) carboxy corroles were mea-
sured using cyclic and differential pulse voltammetric techniques.
All new compounds have either reversible or quasireversible three
oxidations. The excited state oxidation potentials (E⁄) of all new
compounds, which correspond to LUMO were found to be above
the TiO2 conduction band and the electron in the excited state
can efficiently inject into the conduction band.18 Both free-base
and Cu(III) carboxy derivatives are having either one or two reduc-
tion potentials. The reduction of Cu(III) carboxy corroles at around
ꢀ0.20 V corresponds to the Cu(III)/(II) redox couple, whereas the
8. (a) Jasieniak, J.; Johnston, M.; Waclawik, E. R. J. Phys. Chem. B 2004, 108, 12962;
(b) Giribabu, L.; Kumar, Ch. V.; Reddy, P. Y. J. Porphyrins Phthalocyanines 2006,
10, 1007; (c) Wang, C.-L.; Chang, Y.-C.; Lan, C.-M.; Lo, C.-F.; Diau, E. W.-G.; Lin,
C.-Y. Energy Environ. Sci. 2011, 4, 1788.
9. (a) Reddy, P. Y.; Giribabu, L.; Lyness, Ch.; Snaith, H. J.; Kumar, Ch. V.;
Chandrasekharam, M.; Kantam, M. L.; Yum, J. –H.; Kalyanasundaram, K.;
Grätzel, M.; Nazeeruddin, M. K. Angew. Chem., Int. Ed. 2007, 46, 373; (b) Mori, S.;
Nagata, M.; Nakahata, Y.; Yasuta, K.; Goto, R.; Kimura, M.; Taya, M. J. Am. Chem.
Soc. 2010, 132, 4054; (c) Giribabu, L.; Singh, V. K.; Kumar, Ch. V.; Soujanya, Y.;
Reddy, P. Y.; Kantam, M. L. Solar Energy 2011, 85, 1204.
10. Walker, D.; Chappel, S.; Mahammed, A.; Brunschwig, B. S.; Winkler, J. R.; Gray,
H. B.; Zaban, A.; Gross, Z. J. Porphyrins Phthalocyanines 2006, 10, 1259.
11. Park, H.; Bae, E.; Lee, J. –J.; Park, J.; Choi, W. J. Phys. Chem. B 2006, 110, 8740.
12. Paolesse, R.; Nardis, S.; Venanzi, M.; Mastroianni, M.; Russo, M.; Fronczek, F. R.;
Vicente, M. G. H. Chem. Eur. J. 2003, 9, 1192.
13. Broring, M.; Bregier, F.; Burghaus, O.; Kleeberg, Ch. Z. Anorg. Allg. Chem. 2010,
636, 1760.
14. (a) Corey, E. J.; Gilman, N. W.; Canem, B. E. J. Am. Chem. Soc. 1968, 90, 5616; (b)
Godfrey, I. M.; Sargent, M. V.; Elix, J. A. J. Chem. Soc., Perkin Trans. 1 1974, 1353.
15. Reeta, P. S.; Kandhadi, J.; Giribabu, L. Tetrahedron Lett. 2010, 51, 2865.
16. Hydroxylamine hydrochloride (0.076 g, 1.1 mmol), triethyl amine (0.15 g,
1.1 mmol) and the corresponding free-base 3-formyl-5,10,15-triaryl
substituted corroles (1 mmol) were added in 60 mL of dry acetonitrile under
nitrogen atmosphere. The resulting reaction mixture was stirred for 30 min. To
this phthalic anhydride (0.015 g, 0.1 mmol) was added and the reaction
mixture was refluxed for 4–5 h. The reaction mixture was filtered under
suction and the solvent was removed under reduced pressure. The obtained
solid material was subjected to silica gel column chromatography and eluted
with CHCl3:CH3OH (92:8) mixture and the green color band was collected and
recrystallized from CH2Cl2:hexane mixture.
reduction at ꢀ1.65 V corresponds to the generation of corrole
p-an-
ion, which is below the reduction potential of redox electrolyte
(Iꢀ=Iꢀ3 ).19 The photovoltaic device studies by using these corrole
sensitizers are currently under progress.
In conclusion, we have used one-pot mild reaction conditions for
the oxidation of 3-formyl-5,10,15-triaryl substituted corroles to the
corresponding 3-carboxy-5,10,15-triaryl substituted corroles. The
singlet state and electrochemical properties of these 3-carboxy cor-
roles suggested that the LUMO of these compounds above the TiO2
conduction band making an efficient electron injection from ex-
cited state of dye to TiO2 conduction band and HOMO is more posi-
tive than the redox couples, which can reoxidize the sensitizer
easily by taking an electron from redox electrolyte. These sensitiz-
ers have potential for applications in dye-sensitized solar cells.
In the case of 3-carboxy-5,10,15-triaryl substituted copper(III) corroles
derivative, we have taken 3-formyl-5,10,15-triaryl copper(III) corroles
instead of corresponding free-base triaryl corroles.
Analytical data: 1: Yield: 70% (0.400 g). Anal. Calcd for C38H26N4O2: C, 79.98; H,
4.59; N, 9.82%. Found: C, 80.00; H, 4.55; N, 9.83%. MS: m/z 570, requires
570.6386. 1H NMR (CDCl3) (300 MHz) d ppm: 10.70 (br, 1H), 9.00 (s, 1H), 8.90
(s, 1H), 8.75 (m, 5H), 8.20 (m, 6H), 7.75 (m, 9H). IR (KBr) cmꢀ1: 3413, 1699,
1549, 1441, 1240, 1054, 970, 701, 572. 2: Yield: 78% (0.478 g). Anal. Calcd for
C41H32N4O2: C, 80.37; H, 5.26; N, 9.14%. Found: C, 80.40; H, 5.25; N, 9.170%.
MS: m/z 612, requires 612.7184. 1H NMR (CDCl3) (300 MHz) d ppm: 10.70 (br,
1H), 8.80 (m, 3H), 8.55 (m, 4H), 8.00 (d, 6H), 7.30 (d, 6H), 2.70 (m, 9H). IR (KBr)
cmꢀ1: 3378, 1716, 1411, 1247, 960, 701, 495. 3: Yield: 75% (0.495 g). Anal.
Calcd for C41H32N4O5: C, 74.53; H, 4.88; N, 8.48%. Found: C, 74.50; H, 4.90; N,
8.50%. MS: m/z 660, requires 660.7166. 1H NMR (CDCl3) (300 MHz) d ppm:
10.70 (br, 1H), 8.80 (m, 3H), 8.55 (m, 4H), 8.05 (d, 6H), 7.30 (d, 6H), 4.05 (m,
9H). IR (KBr) cmꢀ1: 3398, 1719, 1600, 1245, 1171, 790, 597. 4: Yield: 79%
(0.517 g). Anal. Calcd for C44H38N4O2: C, 80.71; H, 5.85; N, 8.56%. Found: C,
80.75; H, 5.85; N, 8.50%. MS: m/z 654, requires 654.7981. 1H NMR (CDCl3)
(300 MHz) d ppm: 10.70 (br, 1H), 8.80 (m, 3H), 8.55 (m, 4H), 8.00 (s, 3H), 7.30
(d, 6H), 2.40 (m, 18H). IR (KBr) cmꢀ1: 3153, 1720, 1464, 1279, 1065, 791, 515
Cu1: Yield: 72% (0.454 g). Anal. Calcd for C38H23N4O2Cu: C, 72.31; H, 3.67; N,
8.88%. Found: C, 72.35; H, 3.69; N, 8.90%. MS: m/z 630, requires 631.1608. 1H
NMR (DMSO-d6) (300 MHz) d ppm: 10.65 (br, H), 8.25 (s, 1H), 7.80 (m, 9H),
7.70–7.20 (m, 6H). IR (KBr) cmꢀ1: 3215, 1697, 1427, 1311, 1068, 792, 578 Cu2:
Yield: 80% (0.538 g). Anal. Calcd for C41H29N4O2Cu: C, 73.14; H, 4.34; N, 8.32%.
Found: C, 73.20; H, 4.40; N, 8.35%. MS: m/z 672, requires 673.2406. 1H NMR
(DMSO-d6) (300 MHz) d ppm: 10.60 (br, 1H), 8.15 (s, 1H), 7.85 (m, 1H), 7.60 (m,
6H), 7.50 (m, 6H), 7.30 (m, 6H), 2.50 (m, 9H). IR (KBr) cmꢀ1: 3285, 1640, 1457,
1312, 1183, 901, 790, 577 Cu3: Yield: 76% (0.548 g). Anal. Calcd for
Acknowledgments
We are thankful to DST for financial supporting this work. The
author K.S. acknowledges CSIR for the research fellowship. The
authors are thankful to Dr. Ravi Kumar for helping with the emis-
sion measurements.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
C41H29N4O5Cu: C, 68.28; H, 4.05; N, 7.77%. Found: C, 68.30; H, 4.10; N, 7.80%.
MS: m/z 720, requires 721.2388. 1H NMR (DMSO-d6) (300 MHz) d ppm: 12.20
(m, 1H), 8.25 (s, 1H), 7.60 (m, 6H), 7.35–6.85 (m, 9H), 3.98 (m, 9 H). IR (KBr)
cmꢀ1: 3426, 1640, 1471, 1390, 1031, 795. Cu4: Yield: 80% (0.572 g). Anal. Calcd
for C44H35N4O2Cu: C, 73.88; H, 4.93; N, 7.83%. Found: C, 73.85; H, 4.90; N,
7.85%. MS: m/z 715, requires 715.3203. 1H NMR (DMSO-d6) (300 MHz) d ppm:
12.26 (br, 1H), 8.18 (s, 1H), 7.60 (m, 6H), 7.15 (m, 9H), 2.50 (m, 18H). IR (KBr)
cmꢀ1: 3423, 1656, 1425, 1262, 788, 550.
1. Guilard, R.; Barbe, J.-M.; Stern, C.; Kadish, K. M. In The Porphyrin Handbook;
Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: Boston, 2003;
Vol.18, p 303.
2. (a) Johnson, A. W.; Kay, I. T. J. Chem. Soc. 1965, 1620; (b) Gross, Z.; Gray, H. B.
Comments Inorg. Chem. 2006, 27, 61.
3. (a) Paoless, R.; Jaquinod, L.; Nurco, D. J.; Mini, S.; Sagone, F.; Boschi, T.; Smith, K.
M. Chem. Commun. 1999, 1307; (b) Gross, Z.; Galili, N.; Saltsman, I. Angew.
Chem., Int. Ed. 1999, 38, 1427.
17. Maiti, N.; Lee, J.; Kwon, S. J.; Kwak, J.; Do, Y.; Churchill, D. G. Polyhedron 2005,
25, 1519.
4. Gross, Z. J. Biol. Inorg. Chem. 2001, 6, 733.
18. (a) The excited state oxidation potentials was calculated by using the equation,
5. (a) D’Amico, A. Sens. Actuators B 2000, 65, 220; (b) Golubkov, G.; Bendix, J.;
Gray, H. B.; Mahammed, A.; Goldberg, I.; DiBilio, A. J.; Gross, Z. Angew. Chem.,
Int. Ed. 2001, 40, 2132; (c) Kadish, K. M.; Fremond, L.; Burdet, F.; Barbe, J. –M.;
Gros, C. P.; Guilard, R. J. Inorg. Biochem. 2006, 100, 858; (d) Iviv, I.; Gross, Z.
Chem. Commun. 2007, 1987; (e) Flamigni, L.; Gryko, D. T. Chem. Soc. Rev. 2009,
38, 1635.
6. (a) O’Regan, B.; Grätzel, M. Nature 1991, 353, 737; (b) Nazeeruddin, M. K.; Kay,
A.; Rodicio, I.; Humphry-Baker, R.; Muller, E.; Liska, P.; Valchopoulos, N.;
Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382; (c) Grätzel, M. Nature 2001, 414,
338.
ox
Eꢁox ¼ E ꢀ E0ꢀ0. It was found that ꢀ1.30, ꢀ1.28, ꢀ1.35 and ꢀ1.29 V for 1, 2, 3
1=2
and 4, respectively, in case of free-base porphyrins whereas in case of copper
derivatives ꢀ1.82, ꢀ1.79, ꢀ1.73 and ꢀ1.78 V for Cu1, Cu2, Cu3 and Cu4,
respectively. (b) Li, C.; Zhou, J. –H.; Chen, J. –R.; Chen, Y. –S.; Zhang, X. –H.;
Ding, H. –Y.; Wang, W. –B.; Wang, X. –S.; Zhang, B. –W. Chin. J. Chem. 2006, 24,
537.
19. (a) Giribabu, L.; Kumar, Ch. V.; Reddy, V. G.; Reddy, P. Y.; Rao, Ch. S.; Jang, S. –R.;
Yum, J. –H.; Nazeeruddin, M. K.; Grätzel, M. Sol. Eng. Mate. Solar Cells 2007, 91,
1611; (b) Giribabu, L.; Kumar, Ch. V.; Ragavendra, M.; Somaiah, K.; Reddy, P. Y.;
Rao, P. V. J. Chem. Sci. 2008, 120, 455.
7. Martinez-Diaz, M. V.; de la Torre, G.; Torres, T. Chem. Commun. 2010, 46, 7090.