The Reaction of BeCl2 with Carbodiphosphorane C(PPh3)2
[7] O. Diels, B. Wolf, Ber. Dt. Chem. Ges. 1906, 39, 689–697.
[8] C. A. Dyker, V. Lavallo, B. Donnadieu, G. Bertrand, Angew.
Chem. Int. Ed. 2008, 47, 3206–3209.
[9] A. Fürstner, M. Alcarazo, R. Goddard, C. W. Lehmann, Angew.
Chem. Int. Ed. 2008, 47, 3210–3214.
[10] R. Tonner, G. Heydenrych, G. Frenking, Chem. Asian J. 2007, 2,
1555–1567.
[11] a) G. Frenking, R. Tonner, Pure Appl. Chem. 2009, 81, 597–614;
b) S. Klein, R. Tonner, G. Frenking, Chem. Eur. J. 2010, 16,
10160–10170.
ΔEint = ΔEelstat + ΔEPauli + ΔEorb
(3)
The term ΔEelstat corresponds to the quasiclassical electrostatic interac-
tion between the unperturbed charge distributions of the prepared
atoms and is usually attractive. The Pauli repulsion ΔEPauli is the en-
ergy change associated with the transformation from the superposition
of the unperturbed electron densities ρA + ρB of the isolated fragments
to the wave function Ψ0 = NÂ[ΨAΨB], which properly obeys the Pauli
principle through explicit antisymmetrization (Â operator) and renor-
malization (N = constant) of the product wave function. ΔEPauli com-
prises the destabilizing interactions between electrons of the same spin
on either fragment. The orbital interaction ΔEorb accounts for charge
transfer and polarization effects. The ΔEorb term can be decomposed
into contributions from each irreducible representation of the point
group of the interacting system. Since the molecules in our study have
at least Cs symmetry, it is possible to estimate the intrinsic strength of
orbital interactions from orbitals having aЈ (σ) and aЈЈ (π) symmetry
quantitatively. This directly gives the contributions of the σ and π
orbital interactions to the ΔEorb term:
[12] R. Tonner, G. Heydenrych, G. Frenking, ChemPhysChem 2008,
9, 1474–1481.
[13] A striking example was recently reported by Alcarazo et al. who
+
showed that the carbone 1 stabilizes BH2 through σ and π do-
nation in the complex H2B+ǟ1 which could become isolated and
characterized through X-ray analysis. In contrast, the reaction
with NHC leads to the complex NHCǞ(B2H5+)ǟNHC: B. Inés,
M. Patil, J. Carreras, R. Goddard, W. Thiel, M. Alcarazo, Angew.
Chem. Int. Ed. 2011, 50, 8400–8403.
[14] W. Petz, G. Frenking, Top. Organomet. Chem. 2010, 13, 49–92.
[15] a) H. Schmidbaur, C. E. Zybill, D. Neugebauer, Angew. Chem.
1982, 94, 321–322; Angew. Chem. Int. Ed. Engl. 1982, 21, 310–
311; b) H. Schmidbaur, C. Zybill, D. Neugebauer, G. Müller, Z.
Naturforsch. 1985, 40b, 1193–1300.
ΔEorb (Cs) = ΔEσ(aЈ) + ΔEπ(a")
(4)
[16] W. Petz, C. Kutschera, S. Tschan, F. Weller, B. Neumüller, Z.
Anorg. Allg. Chem. 2003, 629, 1135–1144.
Further details on the EDA method[38] and its application to the analy-
sis of the chemical bond[44] can be found in the literature.
[17] a) W. Petz, F. Weller, J. Uddin, G. Frenking, Organometallics
1999, 18, 619–626; b) H. Schmidbaur, C. E. Zybill, G. Müller, C.
Krüger, Angew. Chem. 1983, 95, 753–755; Angew. Chem. Int. Ed.
Engl. 1983, 22, 729–731; c) C. Zybill, G. Müller, Organometal-
lics 1987, 6, 2489–2494; d) J. Sundermeyer, K. Weber, K. Peters,
H. G. von Schnering, Organometallics 1994, 13, 2560–2562.
[18] a) W. Petz, B. Neumüller, S. Klein, G. Frenking, Organometallics
2011, 30, 3330–3339; b) W. Petz, B. Neumüller, J. Organomet.
Chem. 2009, 694, 4094–4099.
[19] J. Vicente, A. R. Singhal, P. G. Jones, Organometallics 2002, 21,
5887–5900.
[20] W. Petz, F. Öxler, B. Neumüller, R. Tonner, G. Frenking, Eur. J.
Inorg. Chem. 2009, 4507–4517.
Supporting Information: (see footnote on the first page of this arti-
cle). Additional structural views and information on compounds 6 and
8 are given. We also give tables with the total energies and the coordi-
nates of the calculated molecules.
Acknowledgement
We thank the Deutsche Forschungsgemeinschaft for financial support.
W.P. is also grateful to the Max-Planck-Society, Munich, Germany, for
supporting this research project.
[21] a) W. Petz, C. Kutschera, B. Neumüller, Organometallics 2005,
24, 5038–5043; b) W. Petz, B. Neumüller, Polyhedron 2011, 30,
1779–1784.
[22] a) B. Neumüller, K. Dehnicke, Z. Anorg. Allg. Chem. 2003, 629,
2529–2534; see also: C. Strupp, Ann. Occup. Hyg. 2011, 55, 30–
42; b) C. Strupp, Ann. Occup. Hyg. 2011, 55, 43–56.
[23] a) N. Fröhlich, U. Pidun, M. Stahl, G. Frenking, Organometallics
1997, 16, 442–448; b) S. Metz, M. C. Holthausen, G. Frenking,
Z. Anorg. Allg. Chem. 2006, 632, 814–818; c) G. Frenking, N.
Holzmann, B. Neumüller, K. Dehnicke, Z. Anorg. Allg. Chem.
2010, 636, 1772–1775.
References
[1] F. Ramirez, N. B. Desai, B. Hansen, N. McKelvie, J. Am. Chem.
Soc. 1961, 83, 3539–3540.
[2] a) A. T. Vincent, P. J. Wheatley, J. Chem. Soc., Dalton Trans.
1972, 617–622; b) G. E. Hardy, J. I. Zink, W. C. Kaska, J. C. Bal-
dwin, J. Am. Chem. Soc. 1978, 100, 8001–8002; c) G. E. Hardy,
W. C. Kaska, B. P. Chandra, J. I. Zink, J. Am. Chem. Soc. 1981,
103, 1074–1079; d) M. Funk, personal communication, Univer-
sity of Marburg, Germany, .
[24] J. Weidlein, U. Müller, K. Dehnicke, Schwingungsfrequenzen I,
G. Thieme-Verlag, Stuttgart – New York, 1981.
[3] a) R. Tonner, F. Öxler, B. Neumüller, W. Petz, G. Frenking, An- [25] B. Neumüller, K. Dehnicke, Z. Anorg. Allg. Chem. 2004, 630,
gew. Chem. 2006, 118, 8206–8211; Angew. Chem. Int. Ed. 2006, 799–805.
45, 8038–8042; b) R. Tonner, G. Frenking, Angew. Chem. 2007, [26] H. Braunschweig, K. Gruss, K. Radacki, Angew. Chem. 2009,
119, 8850–8853; Angew. Chem. Int. Ed. 2007, 46, 8695–8698; c) 121, 4303–4305; Angew. Chem. Int. Ed. 2009, 48, 4239–4241.
R. Tonner, G. Frenking, Chem. Eur. J. 2008, 14, 3260–3272; d) [27] B. Neumüller, F. Weller, K. Dehnicke, Z. Anorg. Allg. Chem.
R. Tonner, G. Frenking, Chem. Eur. J. 2008, 14, 3273–3289.
[4] J. J. Daly, P. Wheatley, J. Chem. Soc. 1966, 1703–1706.
[5] P. Jensen, J. W. C. Johns, J. Mol. Spectrosc. 1986, 118, 248–266.
The bending potential of C3O2 is very shallow and the calculated
2003, 629, 2195–2199.
[28] B. Neumüller, W. Petz, K. Dehnicke, Z. Anorg. Allg. Chem. 2008,
634, 662–668.
[29] M. Niemeyer, P. P. Power, Inorg. Chem. 1997, 36, 4688–4696.
energy difference between the bent equilibrium structure and the [30] a) B. Neumüller, F. Weller, K. Dehnicke, Z. Anorg. Allg. Chem.
linear form is Ͻ 0.1 kcal·mol–1: J. Koput, Chem. Phys. Lett. 2000,
320, 237–248. Carbon suboxide in the solid state adopts a linear
arrangement: A. Ellern, T. Drews, K. Seppelt, Z. Anorg. Allg.
Chem. 2001, 627, 73–78.
2008, 634, 2703–2728; b) M. P. Dressel, S. Nogai, R. J. F. Berger,
H. Schmidbaur, Z. Naturforsch. 2003, 58b, 173–182; c) F. Kraus,
M. F. Fichte, S. A. Baer, Z. Naturforsch. 2009, 64b, 257–262; d)
H. D. Lutz, Struct. Bonding (Berlin) 1988, 69, 97–125.
[6] For a quantitative comparison of the acceptor strength of PR3, [31] R. Appel, F. Knoll, H. Schöler, H.-D. Wihler, Angew. Chem. 1976,
CO, and other ligands see: G. Frenking, K. Wichmann, N.
Fröhlich, C. Loschen, M. Lein, J. Frunzke, V. M. Rayón, Coord.
Chem. Rev. 2003, 238–239, 55–82.
88, 769–770; Angew. Chem. Int. Ed. Engl. 1976, 15, 701–702.
[32] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C.
Burla, G. Polidori, M. Camalli, Sir-92, Rome, 1992.
Z. Anorg. Allg. Chem. 2011, 1702–1710
© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1709